Research

We theoretically and empirically study portfolio optimization under transaction costs and establish a link between turnover penalization and covariance shrinkage with the penalization governed by transaction costs. We show how the ex ante incorporation of transaction costs shifts optimal portfolios towards regularized versions of efficient allocations. The regulatory effect of transaction costs is studied in an econometric setting incorporating parameter uncertainty and optimally combining predictive distributions resulting from high-frequency and low-frequency data. In an extensive empirical study, we illustrate that turnover penalization is more effective than commonly employed shrinkage methods and is crucial in order to construct empirically well-performing portfolios.
Journal of Econometrics (forthcoming), 2018.

Distributed ledger technologies rely on consensus protocols confronting traders with random waiting times until the transfer of ownership is accomplished. This time-consuming settlement process exposes arbitrageurs to price risk and imposes limits to arbitrage. We derive theoretical arbitrage boundaries under general assumptions and show that they increase with expected latency, latency uncertainty, spot volatility, and risk aversion. Using high-frequency data from the Bitcoin network, we estimate arbitrage boundaries due to settlement latency of on average 124 basis points, covering 88 percent of the observed cross-exchange price differences. Settlement through decentralized systems thus induces non-trivial frictions affecting market efficiency and price formation.
Working Paper, 2018.

Teaching

I am/was teaching instructor for the following courses:

Contact