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Christoph Scheuch, Günter Strobl, Viktor Todorov, Patrick Weiss, Christian Westheide, Kathy Yuan,
Josef Zechner and seminar participants at Kellogg School of Management, VU Amsterdam, Amsterdam
Business School, NHH Bergen, University of Copenhagen, Copenhagen Business School, University of
Heidelberg, Brandeis International Business School, New Economic School, Higher School of Economics,
the 4th Vienna Workshop on High-Dimensional Time Series in Macroeconomics and Finance 2019, the
5th Konstanz Lancaster Workshop on Finance and Econometrics and the VGSF Conference 2019 for
helpful comments. I gratefully acknowledge financial support from the Austrian Science Fund (FWF
project number DK W 1001-G16).

mailto:stefan.voigt@vgsf.ac.at
www.voigtstefan.me


1 Introduction

In recent years, technological innovation and regulatory pressure spurred the emergence

of many coexisting trading platforms in most asset classes. Market fragmentation may be

beneficial for some participants, for instance due to increased competition between trading

venues. However, it can also harm informational efficiency as long as limits to arbitrage

prevent cross-market trading from equating prices across markets.1 If frictions render

arbitrage costly, arbitrageurs may refrain from exploiting price differences, thus giving

up their pivotal role to restore the law of one price. As a result, the speed and extent to

which arbitrageurs exploit price differences depends on the magnitude of arbitrage costs

and contributes to the informational value of prices in fragmented markets.

One particular asset that simultaneously exhibits substantial market fragmentation

and considerable arbitrage costs is Bitcoin, the most actively traded cryptocurrency to

date. Bitcoin is traded worldwide at hundreds of exchanges, but persistent price differ-

ences across these exchanges repeatedly arise and cannot be reconciled solely with spreads

or transaction costs.2

What distinguishes cross-market trading of Bitcoin from other assets (e.g., stocks

or bonds) is the underlying decentralized settlement system. While most traditional

security markets are organized around trusted intermediaries, in decentralized settlement

procedures no central clearing counterparty guarantees the ultimate delivery of the asset.

Cross-market arbitrageurs are thus not able to dispose of their position until validators

reach consensus and publicly record the transaction on the blockchain. Hautsch et al.

(2019) show that the associated settlement latency resembles a novel friction that exposes

cross-market arbitrageurs to the risk of adverse price movements and thus imposes limits

to arbitrage.

Settlement latency in blockchain-based systems can be of orders of magnitudes of a

couple of minutes. Biais et al. (2019) show that settlement latency arises as a result of

limited processing capacities of validators. This restriction induces competition among

the originators of transactions. Originators have the option to offer higher fees to create

1Limits to arbitrage arise, for instance, as trading costs (Roll et al., 2007), holding costs (Pontiff
(1996), Gagnon and Karolyi (2010)), constrained arbitrage capital (Shleifer and Vishny, 1997), or in
the presence of short sale constraints (Ofek et al., 2004). I refer to Gromb and Vayanos (2010) for an
extensive survey of this literature.

2Makarov and Schoar (2020) document average daily price difference ratios between exchanges based
in the US and Korea of 15%. Brauneis et al. (2019) find that the market for Bitcoin against USD is
highly liquid in terms of bid-ask spreads but also document that markets are crossed most of the time.
Hautsch et al. (2019) investigate 120 exchange-pairs and document average cross-market price differences
of 63 basis points.
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incentives for validators to include their transactions in the next block, as illustrated

by Easley et al. (2019). Arbitrageurs compete with other users of the Bitcoin network

(e.g., motivated by consumption or private transactions) for limited settlement capacities.

High demand for settlement activities increases arbitrage costs in terms of either longer

expected settlement latencies or higher required offered fees. The adoption of blockchain-

based markets therefore comes at substantial costs for cross-market arbitrageurs.

In this paper, I analyze how blockchain related settlement latency affects two main

pillars of functioning financial markets: price informativeness and liquidity provisioning.

First, I estimate the arbitrage costs for the Bitcoin market and show that they increase

with the number of transactions waiting for verification and the associated higher set-

tlement latency. Simultaneously, I document that faster settlement (and hence lower

arbitrage costs) is associated with larger quoted spreads. I reconcile these two seemingly

contradicting main findings in a theoretical model in which liquidity providers anticipate

that arbitrageurs exploit price differences due to stale information across markets more

frequently if settlement is fast and thus set wider spreads to cope with the adverse se-

lection risk. As a result, the direct effect of faster settlement on arbitrageurs activity is

partially offset by larger liquidity-related arbitrage costs in form of wider bid-ask spreads.

The main econometric challenge is to quantify the magnitude of arbitrage costs be-

cause, in general, cross-market trading activities are not observable. Instead, the estima-

tion of arbitrage costs requires an econometric model.

I provide a dynamic estimation framework based on quoted prices of one asset traded

simultaneously at two markets. The framework rests on the assumption that arbitrageurs

actively monitor and exploit price differences across both markets. If price differences

occur, arbitrageurs buy at the cheaper market and sell at the more expensive market.

As a result, price pressure from arbitrage activity enforces price adjustments at both

markets towards the law of one price. Thus, price pressure from arbitrage capital implies a

cointegration relationship between the quotes at the two markets because price differences

mean-revert towards the long-run equilibrium relationship.

This correction mechanism is suspended whenever limits to arbitrage prevent prof-

itable cross-market trading. More specifically, arbitrage costs determine a no-trade regime

during which arbitrageurs prefer to stay idle. In such a regime, price differences may per-

sist and remain unexploited. As a result, the adjustment of quotes towards the law of

one price is non-linear in price differences and depends on arbitrage costs. From an

econometric perspective, these considerations imply a threshold error correction model
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for quotes in which arbitrage costs determine the magnitude of the thresholds.3 The

estimated threshold defines the no-trade regime and thus allows to back out arbitrage

costs from the dynamics of quoted prices.

The econometric framework incorporates two important novel features: First, I parametrize

the threshold as a function of (observed) proxies for arbitrage costs such as quoted spreads

and network activity. As a result, the no-trade regimes reflect time-varying arbitrage

costs. Second, the parametrization allows me to decompose arbitrage costs into static

latent (exchange-specific) and dynamic friction-specific features.4 I use the econometric

model to estimate the no-trade regime thresholds. Hereby, I exploit a large dataset of

high-frequency orderbook snapshots of two of the largest cryptocurrency exchanges for

trading Bitcoin versus US-Dollar from April 2018 until August 2019. The estimated ar-

bitrage costs on average amount to 9 basis points. The estimated costs attributed to

settlement latency constitute 75% of the estimated threshold. To quantify the contribu-

tion of settlement latency to total arbitrage costs, I use the number of transactions waiting

for verification in the Bitcoin settlement network as a measure of network activity. Net-

work activity varies considerably over time, where high activity increases the settlement

latency of an individual transaction and therefore the risks and costs for arbitrageurs.

I find that a one percent increase in network activity raises arbitrage costs due to

settlement latency by 1.2 USD, whereas exchange-specific risks seem to play minor roles in

preventing arbitrageurs from exploiting price differences. The increase of arbitrage costs

due to higher network activity, however, is partially offset by a simultaneous adjustment

of the quoted spreads. I find that an increase in network activity by one percent leads

to a 0.4 USD decrease in spreads. This result is robust to controlling for trading volume

and volatility.

I reconcile this finding in a theoretical framework that builds on two markets with

asynchronous arrival of fundamental information about the same asset. Market fragmen-

tation manifests itself in restrictions for some market participants to actively monitor and

trade on information from both markets at the same time. Cross-market price differences

occur if quotes on one of the two markets are based on concurrently outdated informa-

tion. Whenever arbitrageurs observe profitable arbitrage opportunities and trade, their

activity implicitly transmits information between the two markets. Two frictions impose

3Incorporating nonlinear adjustment processes to cointegrated variables goes back to, among others,
Balke and Fomby (1997) and Hansen and Seo (2002).

4Ters and Urban (2020) propose a 3-regime threshold model to estimate latent arbitrage costs which
are constant over time. Theissen (2012) incorporates quoted spreads into a similar regime model but
does not estimate latent arbitrage costs.
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limits to arbitrage: (i) exogenous costs such as settlement latency may render arbitrage

costly and (ii) liquidity in terms of spreads which market makers set in anticipation of

cross-market trading activity.

I derive quoted equilibrium spreads as a function of exogenous arbitrage costs and

show that higher arbitrage costs imply a lower adverse selection component in the spreads

of the locally competitive market makers. Hereby, the adverse selection risk decreases

because higher arbitrage costs reduce the likelihood of a profitable arbitrage opportu-

nity. Consequently, quoted spreads are largest when costs due to settlement latency are

absent. In line with the empirical findings, the magnitude of the adverse selection re-

lated arbitrage costs depends inversely on the latency-related arbitrage costs. The overall

effect of changing exogenous arbitrage costs on arbitrageurs activity and thus price infor-

mativeness, measured as aggregate mispricing at both markets, is thus ambiguous: the

change in spreads can even overcompensate the direct effect of latency-related costs such

that a reduction (or even complete removal) of the exogenous friction decreases arbitrage

activity and also harms price informativeness.

In the blockchain-based market under consideration, the economic magnitude of the

adverse selection effect on arbitrage activity is substantial: If network activity increases,

latency-related arbitrage costs increase, but the adverse selection component in the

spreads decreases, hampering the network effect on overall arbitrage costs by almost

30%. Therefore, the variation of the estimated total arbitrage costs is much smaller than

the variation of the individual components. However, the decomposition reveals that,

during periods of narrow spreads, market participants who demand liquidity but are not

arbitrageurs benefit from the presence of blockchain-related arbitrage costs.

Overall, I argue that blockchain technology imposes a novel and economically signifi-

cant friction for cross-market trading which differs substantially from the well-documented

limits to arbitrage in markets for equities. As blockchain-based settlement fundamen-

tally differs from trading that involves (trusted) centralized clearing counterparties, there

are still many unknowns when it comes to its microstructure implications. Abadi and

Brunnermeier (2018) point out that blockchain-based settlement cannot simultaneously

satisfy the demand for security, decentralization and cost efficiency and therefore central-

ized (trusted) intermediaries may dominate in some situations. For instance, Chiu and

Koeppl (2019) estimate that the US-corporate debt market may benefit from blockchain-

based settlement. I provide a novel trade-off that is particularly relevant in the context of

trading cryptocurrencies: due to the nature of the decentralized settlement process, frag-

mented markets cannot simultaneously achieve price informativeness and narrow spreads.
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Instead, reducing or entirely removing the friction associated with settlement latency may

have unintended consequences in terms of local liquidity provision. Initiatives to reduce

settlement latency should thus consider the extent to which fundamental information can

become efficiently distributed across trading venues.

Apart from the implications for blockchain-based trading, this paper also speaks to

the effect of market frictions on arbitrage activity and liquidity in other asset classes.

Concerning the US equity markets, O’Hara and Ye (2011) conclude that Regulation

National Market System Rule 611 fostered the coexistence of trading venues. At the same

time, however, market consolidation fosters cross-market information dispersion. Current

debates on intentional latency delays (speed bumps) address concerns which are in line

with my empirical findings: crowding out cross-market liquidity takers provides market

makers with the opportunity to set smaller spreads (see, e.g. Budish et al. (2015) and

Brolley and Cimon (2019)).5 Whereas it is well established that large spreads constitute

limits to arbitrage (see, e.g. Stoll (1989)), the reverse direction – the interaction between

technological frictions and adverse selection risks received less attention. The results

of this paper highlight that it is important to understand this interaction to evaluate

technological and regulatory changes that target cross-market trading activity, e.g., short-

sale constraints, intentional latency delays or the adoption of blockchain technologies in

financial markets.

The structure of this paper is as follows: In Section 2, I present the main frictions

prevalent in cryptocurrency markets, Section 3 provides the econometric framework and

main results of the estimated arbitrage costs. In Section 4, I provide a theoretical

framework to reconcile the observed effect of latency-related arbitrage costs on liquid-

ity providers and arbitrageurs activity. Section 5 concludes.

2 Arbitrage in Cryptocurrency Markets

Cryptocurrency markets provide an excellent framework to investigate arbitrage costs

and the subsequent implications for price informativeness due to at least two reasons:

First, hundreds of trading venues to exchange cryptocurrencies against fiat money exist

around the globe but substantial obstacles to cross-market arbitrage seem to persist and

hamper price informativeness. Persistent price differences across these trading venues are

well-documented and can only partially be reconciled with frictions such as withdrawal

5The implications of intentional latency delays are still under debate, see, e.g., Aldrich and Friedman
(2017), Hu (2018), Woodward (2018) and Aoyagi (2018).
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restrictions, regulatory pressure or exchange risks. For instance, Choi et al. (2018) provide

evidence for substantial mispricing of Bitcoin at Korean trading venues due to strict

capital constraints. Makarov and Schoar (2020) document substantial violations of the

law of one price at many more trading venues across but also within countries borders.

Market frictions hamper arbitrageurs activities and therefore harm price informativeness.

To address the economic relevance of particular frictions and to rationalize persistent price

differences, I quantify arbitrage costs.

A second identifying feature of cryptocurrency markets is the settlement procedure

of the underlying blockchain-based asset. Trustless verification of cryptocurrency trans-

actions replaces fast but potentially inefficient intermediaries. However, it has been doc-

umented that the limited capacities of proof-of-work consensus protocols and the large

intra-daily variation of transactions waiting for settlement results in costly and time-

consuming competition for the service of verification (see, e.g. Biais et al. (2019) and

Easley et al. (2019)). More specifically, in order to exchange ownership of units of a

blockchain-based asset such as Bitcoin involves moving the asset across wallets controlled

by the opposing counterparty. Settlement of a trade in blockchain-based markets entails

that the network verifies a transaction and subsequently guarantees that only the party

that controls the receiving wallet can pursue further transactions. The time it takes be-

tween announcing such a transaction until settlement is non-trivial and and usually in

orders of magnitudes of a couple of minutes. As Hautsch et al. (2019) show, settlement

latency implies arbitrage costs due to non-hedgeable price risk for cross-market arbi-

trageurs. After observing price differences across two trading venues, arbitrageurs are

not able to dispose of their position before the legal change of ownership is accomplished

and may thus be faced to adverse price movements during the settlement period. The

absence of trusted intermediaries such as clearing houses therefore imposes direct costs

on arbitrageurs.

I use data from the Bitcoin network, one of the most popular decentralized protocols

since Nakamoto (2008) published the concept and the underlying code. As of 2020,

Bitcoin can be traded continuously on more than 400 markets that differ substantially in

terms of location, fee structure and investors access. I employ high-frequency orderbook

information from the public application interfaces of the largest cryptocurrency exchanges

that feature BTC versus USD trading.

For the analysis at hand I use minute-level orderbook data from the exchanges Bit-

stamp and Gemini which both do not allow any form of margin trading. Both exchanges

comply with the virtual currency license of the New York State Department of Financial
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Table 1: Summary statistics of the orderbook snapshots.

variable Mean SD Min 5% Median 95% Max

zt (USD) 0.22 7.20 -296.36 -7.65 -0.20 9.53 499.31
Spread (Bitstamp, USD) 3.28 3.14 0.01 0.01 2.31 9.47 53.65
Spread (Gemini, USD) 1.68 2.47 0.01 0.01 0.71 6.40 87.03
δt (USD) 0.22 6.08 -293.51 -5.05 -0.00 6.80 497.06
|zt| (bp) 5.90 8.78 0.00 0.39 4.38 15.80 951.86
Spreads (bp) 4.06 3.25 0.01 0.23 3.35 10.07 118.30
|δ| (bp) 3.15 8.35 0.00 0.00 0.90 12.20 947.57
% Fraction of Excess Price Differences 58 49 - - - - -
Volume (Gemini, million USD) 21.87 19.31 1.91 3.42 16.73 56.43 176.03
Volume (Bitstamp, million USD) 66.02 56.30 5.37 14.09 48.72 173.00 477.67

Notes: This table provides summary statistics for the quoted prices for Bitcoin in USD on Bitstamp and
Gemini. The sample is based on minute level information starting from March 1st, 2018 until August 1st,
2019. zt corresponds to the midquote price differences (Bitstamp - Gemini as of Equation (1)). δt is the
spread-adjusted midquote price differential as of Equation (3). Basis points (bp) are always computed

by scaling with the average midquote across both exchanges. Spreads (bp) denotes SBitstamp
t + SGemini

t

standardized by the midquote, thus the total spreads required to trade across the two markets. % Fraction
of Excess Price Differences corresponds to minutes in which spread-adjusted price differences imply an
arbitrage opportunity. Trading volume is computed in million USD per day.

Services (DFS) and therefore both venues are accessible for US investors. The sample

ranges from March 1st, 2018 until August 1st, 2019. Issues with time differences do

not arise because both markets are open every day without any trading pauses. Re-

ported daily trading volume on the two exchanges varies considerably, ranging from 1.9

million USD to almost 180 million USD at Gemini and exceeding 450 million USD at Bit-

stamp during periods of particular high trading activity. The time-series of cross-market

midquote price differences is computed each minute as follows

zt := qBitstamp
t − qGemini

t =
1

2

(
aBitstamp
t − aGemini

t + bBitstamp
t − bGemini

t

)
(1)

where akt and bkt are the quoted best ask and best bid, respectively, and qkt denotes the

midquote at time t at market k. Spreads at the best level denote the difference between

the ask and bid price on each market.(
SBitstamp
t

SGemini
t

)
:=

1

2

(
aBitstamp
t − bBitstamp

t

aGemini
t − bGemini

t

)
. (2)

Table 1 provides summary statistics of the quoted price differences and spreads. Midquote

price differences zt are centred around zero but reveal substantial variation over time,
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sometimes reaching almost 500 USD (1000 bp). Quoted (half-)spreads at the two ex-

changes are relatively small but exhibit substantial variation over time. During some

periods, spreads at Gemini spike to almost 90 USD. However, average spreads are around

2 bp which indicates that Gemini and Bitstamp resemble rather liquid markets, also in

comparison to US equity markets.6 Price differences in excess of the spreads constitute

potential arbitrage opportunities. The average spread-adjusted price difference is

δt := max
{

0, |zt| −
(
SBitstamp
t + SGemini

t

)}
= max

{
0, bGemini

t − aBitstamp
t , bBitstamp

t − aGemini
t

}
. (3)

Average cross-market midquote differences adjusted for spreads are around 3 bp and

positive during 58% of all minutes in the sample period.

Figure 1 visualizes price differences and quoted spreads at the two exchanges during

the sample period. The black line corresponds to the midquote differences zt in USD

and the grey shaded area corresponds to the costs spanned by the minute-level sum of

the quoted spreads Sit + Sjt .
7 Consequently, the area between the two lines corresponds

to cross-market spread-adjusted price differences δt. The figure suggests that arbitrage

opportunities may exist as one can observe substantial price differences in excess of quoted

spreads. Such an observation can only be reconciled with functioning financial markets

if additional costs exceed the potential gains and therefore render trading unattractive.

On longer time scales, deviations from the law of one price do not persist and instead,

mean-reversion towards the law of one price seems to play a role.

Therefore, the data reveals limits to arbitrage which prevent cross-market arbitrageurs

from exploiting price differences δt > 0. From an empirical perspective it is, however,

challenging to identify the channels that impose arbitrage costs. Arguably, limits to

arbitrage can arise in many different forms. As one source, I exploit variation in settlement

latency as a proxy for price risks for arbitrageurs in order to quantify costs related to the

decentralized settlement process in the market for cryptocurrencies.

To do so, I gather transaction-specific information from blockchain.com, a popular

provider of Bitcoin network data and download all blocks verified during the sample pe-

riod. I extract information about all verified transactions in this period. Each transaction

contains a unique identifier, a timestamp of the initial announcement to the network, and

6Brogaard et al. (2014) documents relatve spreads from 6 basis points for large firms at NYSE.
7For the sake of readability I mirror the spreads around zero to visualize potential profitable arbitrage

opportunities in both directions.
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Figure 1: Quoted price differences and spreads.

Notes: This figure visualizes the minute-level price differences between Bitstamp and Gemini. The black
line corresponds to the midquote price differences (zt) in USD whereas a positive value indicates that
Bitstamp quotes a higher price than Gemini. The grey area corresponds to the spreads required to buy
and sell a marginal unit of Bitcoin at the two markets.

the fee (per byte) the initiator of the transaction offers validators to verify the transac-

tion. Any transaction in the Bitcoin network, irrespective of its origin, has to go through

the so-called mempool which is a collection of all unconfirmed transactions. These trans-

actions wait in the mempool until they are picked up by validators and get verified. The

Bitcoin protocol restricts the number of transactions that can enter a single block and

therefore induces competition among the originators of transactions who can offer higher

settlement fees to make it attractive for validators to include transactions in the next

block.

Validators bundle transactions that wait for verification and try to solve a computa-

tionally expensive problem which involves numerous trials until the first validator finds

the solution. For the Bitcoin protocol, validators successfully find a solution and append

a block on average every 10 minutes. The number of transactions waiting for verifica-

tion serves as a proxy for the activity of the Bitcoin network. The average number of

transactions waiting for verification is above 8,400 and temporarily exceeds 39,000. As

on average only around 1,000 transactions enter a single block, the queue of transactions
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Table 2: Descriptive statistics of the Bitcoin network.

Mean SD 5 % 25 % Median 75 % 95 %

Transaction Size 514.00 2169.86 192.00 225.00 248.00 372.00 962.00
Fee per Byte (Satoshi) 23.17 203.80 1.36 4.01 9.17 22.52 87.80
Fee per Transaction (USD) 0.60 8.08 0.02 0.07 0.15 0.40 2.00
Latency 30.54 165.31 0.73 3.58 8.85 20.28 90.87
# Waiting Transactions 8437.26 14438.03 324.00 1336.00 3429.50 8064.50 39415.00

% cross-exchange (daily) 2.62 1.92 0.47 1.40 2.11 3.45 6.56

Notes: This table reports descriptive statistics of our Bitcoin transaction data. The sample contains all
transactions settled in the Bitcoin network from March 1st, 2018, until August 31, 2019. Fee per Byte is
the total fee per transaction divided by the size of the transaction in bytes in Satoshi where 100,000,000
Satoshi are 1 Bitcoin. Fee per Transaction is the total settlement fee per transaction (in USD). I
approximate the USD price by the average minute-level midquote across all exchanges in our sample.
Latency is the time until the transaction is either validated or leaves the mempool without verification
(in minutes). Transaction Size denotes the size of the transaction in bytes. # Waiting transactions is the
number of transactions waiting for verification (per minute). % cross exchange (daily) corresponds to the
(percentage) fraction of transactions that are associated with cross cryptocurrency-exchange transactions
within a particular day.

waiting for verification implies settlement latency as the probability of being included in

the next block decreases with the number of transactions that wait for settlement. Ta-

ble 2 shows relevant summary statistics of the sample of Bitcoin transactions. The time

until verification of a transaction in the Bitcoin network on average exceeds 30 minutes

and exhibits substantial fluctuation. The costs of transferring Bitcoin from one wallet to

another are on average 0.60 USD, irrespective of the trading size.

Panel A of Figure 2 illustrates the time-series of outstanding transactions during the

sample period. Besides of regular intraday fluctuation patterns, periods of high network

activity occurred particularly during December 2018 and since April 2019. The intra-

daily variation of the Bitcoin network utilization is large. Panel B of Figure 2 illustrates

the average number of transactions waiting for verification during the day, divided into

intervals of 15 minutes in Central European Time. Network activity starts to spike at

around 2pm CET which corresponds to 9am EST.

As postulated, for instance, by Easley et al. (2019) and Biais et al. (2019), the num-

ber of transactions waiting for verification increases the latency of all transaction waiting

for verification. I illustrate this relationship in Figure 3. On days with many transac-

tions waiting for verification, the average latency in minutes until settlement increases,

reflecting the competition for settlement services in the decentralized network. Table 3

provides further evidence for the compelling relationship between network activity and
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Table 3: Duration model.

Constant α Fee Network activity No flow Full mempool

-0.0417 -1.5090 -0.0718 3.4773 0.6481 0.2798
(-1.2009) (-56.2959) (-2.5333) (129.7267) (29.2972) (13.1538)

Notes: The table aggregates parameter estimates of a duration model of the latency of the observed
transactions in the Bitcoin network. Fee is measured as fees per byte of transaction i, Network acitvity
is measured by the (log) number of transactions waiting for verification. No flow is zero whenever
a transaction can be identified as a cross-exchange transaction and one otherwise and Full mempool
indicates a dummy variable that is one if the number of transactions waiting for verification exceeds the
maximum allowed block size. Values in brackets denote t− statistics based on the maximum likelihood
estimation of the parameters in Equation (4).

the settlement latency in the Bitcoin network. The table contains parameter estimates

of fitting the conditional probability density function of every transaction i with latency

τi that has been verified by the Bitcoin network during the sample period. I model the

latency as a Gamma distribution with rate parameter βi and shape parameter α which

implies a probability density function for τi of he form

π(τi|θT ) =
βαi

Γ (α)
τα−1
i e−βiτi , (4)

with

θT := (θβT , α)′ ∈ Rk and βi = exp(−x′iθ
β
T ), α > 0. (5)

Here, Γ(α) corresponds to the Gamma function. xi ∈ RK includes an intercept, the fee per

byte, the number of transactions waiting for verification as a proxy for network activity,

a dummy which is zero for cross-exchange transactions and one otherwise and a dummy

which is one if the number of waiting transactions is larger than the hard-coded size

constraint to adjust for potential non-linearities in the settlement latency. The Gamma

distribution exhibits mean E (τi) = α exp
(
x′iθ

β
T

)
and thus the specific parametrization

allows to interpret estimate β̂i as the sensitivity of the conditional mean with respect

to (small) changes of variable xi. The estimated parameters in Table 3 indicate that

paying higher fees reduces the expected settlement latency whereas an increase in network

activity, measured by the number of transactions waiting for verification, is associated

with higher expected settlement latency. The effect is even more pronounced when the

demand for settlement services by validators exceeds the network capacities in terms of

the maximal blocksize. The relationship between the number of transactions waiting for
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Figure 2: Network activity.

Notes Panel A: Number of transactions waiting for verification. This figure shows the time series of
the daily average number of transactions waiting for verification (in 10,000 transactions waiting for
verification).

Notes Panel B: Intra-daily fluctuations.This figure shows the average number of transactions waiting for
verification during 15 minute intervals over the day. The dotted lines correspond to the 5% and 95%
quantiles (in 10,000 transactions waiting for verification).

verification and settlement latency implies non-hedgeable price risks. Therefore, if price

risk due to settlement latency plays a role for the activity of arbitrageurs one would expect

the no-trade region of arbitrageurs to widen during times of high network utilization.

For the analysis, two observations are important: First, the exchanges Gemini and

Bitstamp both net trades internally, effectively circumventing settlement latency for quote

updating activities. Therefore, the number of transactions waiting for verification is

relevant only for cross-market arbitrageurs which are forced to use the blockchain to move

funds between cryptocurrency-exchange controlled wallets. Second, a spike in network

activity due to arbitrageurs transactions waiting for verification is unlikely to be of any
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Figure 3: Network activity and settlement latency.

Notes: This figure visualizes the relationship between the number of transactions waiting for verifica-
tion and the latency of subsequently verified transactions. The scatterplot shows with (log) number of
transactions waiting for verification on the x-axis and the average daily waiting time (in minutes) of all
transactions verified on that particular day. The blue line indicate the OLS estimator of the slope and
constant of regressing waiting time on log of the number of waiting transactions.

concern. To merit the last point. a more careful discussion is required: The Bitcoin

network is utilized for transactions of any purpose, including consumption or financing

of illegal activities (see, e.g., Foley et al. (2019)). Cross-market trades with the purpose

of exploiting price differences are of negligible relevance and therefore I do not detect

any feedback effects from the presence of price differences on settlement latency. To

illustrate that cross-market arbitrageurs do not induce inflated network activity, I examine

a novel dataset that allows to identify potential arbitrage transactions and I find that such

transactions only represent a minor fraction of all transactions waiting for verification and

further do not differ with respect to the relevant summary statistics from transactions

unrelated to cross-market arbitrage activity.

Settlement latency affects cross-market arbitrageurs because they cannot dispose of

their position before the sell-side exchange accepts their Bitcoin deposit as valid. Whereas

the Bitcoin blockchain is public, trades are usually not disclosed directly. However, to

provide more information regarding the cross-market Bitcoin flows, I collect a list of

wallets which are likely under the control of the exchanges in my sample.8 Although

Bitcoin transactions are pseudonymous in the sense that the transactions publicly reveal

all addresses associated with a transaction, but it is hard to map these addresses to their

8The procedure to detect exchange-controlled wallets is laid out in Meiklejohn et al. (2013). I am
grateful to Sergey Ivliev for his support in providing the data.
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Table 4: Descriptive statistics of the cross-exchange transactions.

Mean SD 5 % 25 % Median 75 % 95 %

Fee per Byte (Satoshi) 44.52 78.38 3.39 8.22 14.46 39.69 238.66
Fee per Transaction (USD) 4.91 27.84 0.06 0.17 0.74 2.97 9.86
Latency 12.39 24.70 0.50 3.00 7.27 14.70 36.53
Transaction Size (byte) 1708.47 4342.36 223.00 249.00 424.00 1172.00 5220.00

Notes: This table reports descriptive statistics of the Bitcoin transaction data. The sample contains
all identified cross-exchange transactions settled in the Bitcoin network from March 1st, 2018, until
August 31, 2019. Fee per Byte is the total fee per transaction divided by the size of the transaction in
bytes in Satoshi where 100,000,000 Satoshi are 1 Bitcoin. Fee per Transaction is the total settlement
fee per transaction (in USD). I approximate the USD price by the average minute-level midquote across
all exchanges in our sample. Latency is the time until the transaction is either validated or leaves the
mempool without verification (in minutes). Transaction Size denotes the size of the transaction in bytes.
Mempool Size is the number of other transactions in the mempool at the time a transaction of our sample
enters the mempool.

respective physical or legal owners. The wallet IDs allow to identify all transactions in

which funds have presumably been moved between two exchange-controlled wallets. All

cross-market arbitrage activity should therefore be a subset of the transactions included

in this sample (in principle, agents could also move funds between trading platforms

due to reasons which are not related to exploiting price differences). Table 4 provides

comparative statistics of the underlying characteristics of the two subsets of transactions.

Standard comprises of all transactions of the Bitcoin network and Arbitrage comprises

of all transactions which are flagged as being potential cross-market fund flows. The

table reveals that in general cross-exchange flows settle faster, the average latency in

minutes only comprises about 50% of the latency of the entire network. However, this

does not mean that arbitrageurs can move funds between two exchanges more efficiently

than other market participants. The table reveals that fees paid for cross-exchange flows

are on average about 5 USD, roughly 10 times as much as the average transaction fee in

the entire network. Therefore, cross-exchange flows are settled faster because they are

more valuable from the perspective of miners. However, these settlement fees resemble

arbitrage costs for arbitrageurs which should reflect the trade-off between paying higher

fees and getting faster settlement.

3 Estimating Arbitrage Costs

From an empirical perspective, it is a challenge to quantify arbitrage costs because they

are generally not observable. Whereas potential impediments to arbitrage could be iden-
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tified, e.g., the presence of short selling restrictions or settlement latency, the magnitude

and economic relevance of these frictions remains opaque.

In principle, one could try to draw indirect inference about arbitrageurs’ activity by

evaluating potential portfolio holdings. Recent literature investigates the long side of

arbitrage trading based on hedge fund stock holdings (Brunnermeier and Nagel, 2004),

the short side by investigating short-selling activity on stocks (Hanson and Sunderam,

2014) or a combination of both trading directions to examine net arbitrage trading (Chen

et al., 2019). However, in many applications and specifically in the context of cryptocur-

rency markets, asset holdings and trading activity may remain opaque. To overcome this

measurement issue, I instead identify arbitrage trading activity based on quote dynamics

to quantify the extent to which arbitrageurs refrain from exploiting price differences due

to market frictions. The econometric framework rests on the notion of arbitrageurs ac-

tively enforcing the law of one price as long as arbitrage costs do not render the otherwise

profitable trading activity unattractive.9

I derive a threshold vector error correction model for observed quoted prices based on

the notion that cross-market arbitrage trading enforces the law of one price. Price pressure

from arbitrage trades implies mean-reversion towards the efficient price. Arbitrage costs

impose a threshold for price differences below which arbitrageurs prefer to stay idle instead

of trading away price differences. Empirically, this strategic behaviour implies a three

regime threshold model for the time series of price differences which allows to identify

latent arbitrage costs. The underlying theory based on estimating threshold vector-error

correction models is close in spirit to applications on exchange rates (Lo and Zivot,

2001), commodity markets (Park et al. (2007) and Stevens (2015)) and trading of futures

(Dwyer et al. (1996) and Forbes et al. (1999)). As a result, the structural framework

does rely solely on the dynamics of quoted prices at fragmented markets to detect cross-

market arbitrage activity without relying on the identification of portfolio holdings of

arbitrageurs.

The framework is flexible to allow for time varying arbitrage costs in response to shifts

in potential proxies for the arbitrage costs. Given the focus to disentangle the effect of ar-

bitrage costs due to settlement latency in blockchain-based markets on liquidity and price

informativeness, time-variation of arbitrage costs is a particularly relevant feature, which

however, may also apply in different market contexts. Time-varying thresholds consti-

tute one of the main differences of my framework compared to, among others, Balke and

9The econometric model rests on a generalization of the theoretical framework presented in Section
4 which provides a micro-foundation for the underlying threshold vector-error correction model.
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Fomby (1997) and Ters and Urban (2020). Whereas Theissen (2012) proposes to include

time-varying liquidity in the regime specification, he abstracts from estimating latent

arbitrage costs. Dwyer et al. (1996) instead, do not allow for asymmetries depending on

the direction of the trade.

More specifically, I exploit time-variation of a proxy for a particular friction and

attribute its contribution to the arbitrage costs. Then, the econometric model allows to

back out the arbitrage costs and the sensitivity of the threshold magnitude with respect

to the proxy using observed data.

3.1 Econometric model

I consider one risky asset, traded at two market i and j, where qkt denotes the midquote of

the asset at time t at market k ∈ {i, j}.10 As the asset at both markets provides a claim

on otherwise identical cash flows, the central law of one price defines a cointegration

relationship of the midquotes. Intuitively speaking, efficient markets imply that price

differences

zt := qit − q
j
t (6)

are stationary. Note, that price differences may occur due to asynchronous information

revelation (Kotz et al., 2012) and asymmetric private valuation shocks (Foucault et al.,

2017). Further, limits to arbitrage may render cross-market trading unattractive and

therefore hamper the convergence of zt towards the law of one price (Gromb and Vayanos,

2010).11

The distribution of the midquote price differences zt evolves as a random walk within

information arrivals but exhibits mean reversion whenever quotes are updated, either due

to a news event or due to arbitrage trades.12 The main assumption for the econometric

model is that arbitrageurs exploit price differences qit − q
j
t only if they exceed the total

arbitrage costs. Price pressure due to order flow arises as soon as prices deviate from their

equilibrium relationship. Therefore, arbitrage activity reinforces the law of one price (see,

e.g., Ross (1976)). The presence of arbitrage costs implies that price pressure is present

only if price differences are large enough, which allows to identify the following three

different regimes:

10In the estimation I always consider the log of midquotes as the relevant measure.
11In the theoretical framework in Section 4 price differences are caused by asynchronous information

arrival. It turns out that even in presence of arbitrage costs, the equilibrium relationship in Equation 6
is stationary.

12See Chan (1993) for necessary stationary conditions of zt.
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Definition 1. Arbitrage activity implies three possible regimes rt of the economy at time t:

either the arbitrageur prefers to stay idle (rt = no trade), she sells at market i and buys at

market j (rt = pos), or vice versa (rt = neg). Formally, given price difference zt = qit−q
j
t

at time t, the economy is in the following regime:

rt =


pos, if zt > cpos

t

neg, if − zt > cneg
t

no trade, if cneg
t ≤ zt ≤ cpos

t

(7)

where cpos
t ≥ 0 and cneg

t ≥ 0 correspond to the arbitrage costs at time t.

The regime rt is central for the identification of the arbitrage costs. In a frictionless market

the theoretical no-arbitrage condition requires price differences to be exploited as soon as

they arise, price dynamics would collapse to a 1-regime error correction model, price dif-

ferences would be stationary and price pressure would be present continuously. However,

if arbitrage costs establish market fragmentation price differences may become sizeable

which implies a non-linear adjustment process towards the long-run equilibrium given by

the law of one price. The magnitude of the no-trade region determines if price differences

persist because they do not correspond to a profitable arbitrage strategy. The boundaries

of the no-trade region [cneg
t , cpos

t ] are defined as the minimum price differences required to

make the arbitrageur indifferent between trading and staying idle (rt = no trade). If price

differences zt exceed the threshold, however, one can expect price pressure to reinforce

the equilibrium relationship represented by the law of one price. In other words, the law

of one price may temporarily fail to hold whenever rt = no trade, whereas quoted prices

exhibit mean reversion if and only if the economy is in regime rt = pos or rt = neg.

Two features in Definition 1 are of particular importance: First, arbitrage costs may be

asymmetric in the sense that it can be costlier for the arbitrageur to perform cross-market

trades in one direction rather than in the reverse direction (cpos
t 6= cneg

t ). Potential reasons

for asymmetries are, e.g., short-sale constraints or asymmetric buy and sell fees. In the

specific case of cryptocurrency markets, asymmetric arbitrage costs play a role of partic-

ular importance: Regulatory differences across national borders and in particular capital

controls have been shown to induce substantial premiums for the price of, e.g., Bitcoin, for

instance on Korean exchanges (Choi et al., 2018). Further, as cryptocurrency exchanges

serve as custodian of customer funds, substantial risks may be associated with holding

assets on particular exchanges. As a result, price pressure stemming from arbitrageurs

activity may response asymmetrically to price differences.
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The second relevant feature of Definition 1 is that arbitrage costs can be time-varying

such that during some periods the no-trade region widens. If zt > 0, it is profitable to buy

from market j and sell at market i. Consequently one can expect prices to adjust at least

until zt = cpos
t . As a result, quotes at market j may increase and simultaneously quotes

at market i may decrease. Further, price adjustments are presumably non-instantaneous.

More specifically, the implied return dynamics ∆qkt := qkt − qkt−1 are as follows:(
∆qit

∆qjt

)
=

(
µri,t

µrj,t

)
+

(
αri

αrj

)(
1 −1

)(qit−1

qjt−1

)
︸ ︷︷ ︸

zt−1

+

(
uit

ujt

)
(8)

where µrk,t corresponds to a potential time-varying mean specification, for instance in the

presence of autoregressive dynamics and ukt denotes the innovation process. Equation (8)

corresponds to a vector error correction model in the spirit of Engle and Granger (1987).

The equation implies that price adjustments can occur due to idiosyncratic shocks ut or

due to the activity of arbitrageurs in response to profitable arbitrage opportunities. αri

and αrj correspond to the price adjustment in response to price pressure from arbitrage

trades.

If, for instance, rt = pos, the arbitrageur buys at exchange j and sells at the expensive

exchange i. Consequently, prices at the buy side market should decrease (∆qit < 0) and

prices at the sell side market should increase (∆qjt < 0). For the adjustment terms this

implies αpos
j ≥ 0 and αpos

i ≤ 0. The reverse case holds for rt = neg, implying that ∆qit > 0

and ∆qjt < 0. This is the case if, again, αneg
j ≥ 0 and αneg

i ≤ 0. However, although

theoretically the sign of the adjustment terms should be identical for the regimes pos and

neg, magnitudes of price adjustment may differ across the regimes. Most importantly,

during the regime rt = no trade, no price adjustment due to arbitrage trading should

be present and thus price dynamics only follow idiosyncratic shocks such that ∆qkt =

µno trade
k,t + ut.

Instead of imposing the law of one price directly, one could also aim at estimating

the cointegration relationship (1, β)
(
qit, qjt

)′
which would significantly increase the

estimation uncertainty (see, e.g., Hansen and Seo (2002), Seo (2011), Ters and Urban

(2020)). Latter approaches focus on uncertain or unstable cointegration relationships,

for instance in applications related to statistical arbitrage. I, instead, impose the law of

one price as an economically motivated relationship to mitigate identification issues (see,

e.g., Martens et al. (1998) and Stevens (2015)).
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3.2 Parametrization and estimation

Next, I provide a (Bayesian) framework to estimate the arbitrage costs crt of the econo-

metrics model given by Equation (7) and Equation (8). First, I parametrize the time-

varying arbitrage costs crt as a linear function of fixed costs and exposure to a potentially

time-varying proxy of a source of exogenous arbitrage costs such as settlement latency.

The estimation framework explicitly takes into account liquidity costs in form of bid-ask

spreads.

Definition 2. I parametrize the threshold crt from Equation (7) as a function of observable

proxy for arbitrage costs xt with V (xt) > 0 such that

crt := max (0, cr + c1xt) + Sit + Sjt . (9)

Here, cr corresponds to (unobservable) fixed arbitrage costs which may depend on the

current regime and reflect, for instance, exchange risks or constraints due to capital

controls. xt is an vector of observations that proxy a time-varying source of arbitrage

costs for an arbitrageur. This could be, for instance, a time dummy to reflect changes

in regulation (e.g., event fixed effect), shorting costs or, for blockchain-based markets,

network activity as an instrument for settlement fees and latency. The parameter c1

captures the effect of xt on the magnitude of the no-trade region. The parametrization

allows to derive the sensitivity of the threshold crt with respect to changes in the chosen

instrument for arbitrage costs as follows:

∂crt
∂xt

= c1 +
∂Sjt
∂xt

+
∂Sit
∂xt

. (10)

Here,
∂Skt
∂xt

captures the effect of exogenous arbitrage costs on quoted spreads and can

be modelled directly because the spreads Skt and the proxy xt are both observable. The

econometric model therefore allows to infer the presence of arbitrageurs depending on the

non-linear adjustment towards the law of one price. Further, the parametrization provides

an intuitive decomposition of arbitrage costs into exchange-specific, proxy-related and

liquidity-driven components.

For estimation purposes, the threshold vector error correction model in Equation (8)

can be rewritten as a multivariate linear regression

∆V r = XrBr + U r where r ∈ {neg, pos, no trade} (11)
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with

∆V r
tr =

(
∆vitr
∆vjtr

)′
and Xr

tr =

(
1

ztr−1

)′
. (12)

Here, tr corresponds to the stacked dates of all observations in regime r. The parameters

to estimate13 are

θ =


(
µneg

1 µneg
2

αneg
1 αneg

2

)
︸ ︷︷ ︸

Bneg

,

(
µpos

1 µpos
2

αpos
1 αpos

2

)
,

(
µno trade

1 µno trade
2

αno trade
1 αno trade

2

)
,

 Σneg

Σpos

Σno trade

 ,

c
neg

cpos

c1


 .

(13)

Under the assumption that the error terms U r are zero-mean multivariate normal dis-

tributed with variance covariance matrix Σr, the likelihood of the data conditional on the

parameters θ is given by

L(∆V |θ,X) ∝
∏

r∈{neg, pos,
no trade}

|Σr|−
Tr

2 exp

(
−1

2
tr
(
(Σr)−1 U r

θ
′U r
θ

))
(14)

where T r is the number of observations in regime r and U r
θ = ∆V r

tr −X
rBr.

The estimation can be performed either via concentrated maximum likelihood (see

Tong (1983), Tsay (1998) and Hansen and Seo (2002)) or by means of Bayesian infer-

ence (see, e.g., Forbes et al. (1999) and Huber and Zörner (2019)). I employ a stan-

dard Bayesian approach that effectively circumvents issues related to the optimization

of complex likelihood functions. The results are quantitatively similar for concentrated

maximum likelihood methods.

I specify non-informative prior distributions for βi := vec (Bi) ,Σi, c0 and c1 as follows:

p(Σr) ∼ IW (V, v), p(vec(Br)|Σr) ∼MN(0, C ⊗ Σr), p(c) ∼ U(−∞,∞) (15)

where IW (·, v) corresponds to an inverse Wishart Distribution with v degrees of freedom

and positive scale matrix V , MN(·) corresponds to a multivariate normal distribution

and U(·) corresponds to a uniform distribution with unbounded support. In the empirical

13Extended models that capture potentially autoregressive components in the spot drift µri do provide
qualitatively very similar results in the given setup. I therefore focus on a parsimonious structure with
static drift term.
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analysis, I use v = 2, V = 10−5

(
1 0

0 1

)
and C = V −1 as hyperparameters. I perform in-

ference on θ using Monte Carlo Markov Chain methods and provide a detailed description

of the sampling algorithm in Appendix D. Inference is drawn based on Gibbs sampling

procedures with Metropolis Hasting steps. The sample of parameters is generated with

50 parallel chains of length 20.000 after discarding 20.000 burn-in iterations.

3.3 Estimation results

Table 5 summarises the posterior distribution of the parameters. Here, the estimation

is based on setting µri,t to a constant such that the econometric model resembles Equa-

tion (11).

As a natural proxy for settlement fees and latency in the market for cryptocurrencies,

I employ the (log) number of transactions waiting for verification in the Bitcoin network

at minute t. High values of xt are therefore associated with high network activity and

larger competition among originators of transactions for mining services.

As of Panel A of Table 5, the estimated parameters ĉr0 are between 3.7 USD and

5.05 USD. The estimated parameters reflect substantial costs for cost market trading

which may be attributed to withdrawal fees and exchange risks. Further, sampling from

the posterior distribution allows to evaluate the distribution of the difference cpos
0 − cneg

0

which is positive, thus arbitrage costs are different depending on the direction of the

trade. As a main result, the exposure of the arbitrage costs to the number of uncon-

firmed transactions, ĉ1, is positive. Thus, higher blockchain activity imposes additional

costs for cross-market arbitrageurs. Moreover, an increase in the number of outstand-

ing transactions by 1% implies an average increase in the no-trade region by more than

2 bp. Therefore, fluctuations in the network activity, as for instance characterized by

intra-daily variation as of Figure 2 imply considerable impediments for arbitrageurs and

may impose severe effects on price informativeness.

Estimated total arbitrage costs in excess of quoted spreads, ĉr := max (0, ĉr0 + ĉr1x̄t)

where x̄t is the time-series average of the (log) number of transactions waiting for ver-

ification amount to 15.11 USD in the case where Bitstamp is the sell-side market and

13.81 USD in the reverse direction, hinting at substantial arbitrage costs in excess of the

spreads. Therefore, pushing forces back to to the law of one price due to arbitrageurs

activity are present only, if price differences exceed these thresholds after already having

adjusted for the spreads.
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Table 5: Posterior parameter estimates.

Notes Panel A: Posterior estimates of crt . Diff corresponds to the posterior distribution of the
difference of the two fixed cost parameters, cpos0 − cneg0 .

r Neg Pos cpos0 − cneg0

c0 3.761 5.055 1.294
(3.45, 3.79) (4.99, 5.62) (1.21, 2.17)

c1 1.271
(1.23, 1.67)

Notes Panel B: Posterior estimates of αr and µr.

r Pos No trade Neg

αbitstamp -0.789 -0.049 -0.655
(-0.8, -0.77) (-0.15, 0.14) (-0.67, -0.62)

αgemini 0.084 0.004 0.091
(0.027, 0.091) (-0.08, 0.09) (0.081, 0.095)

µbitstamp -0.77 0.011 0.36
(- 0.78,-0.71) (-0.01, 0.03) (0.29, 0.38)

µgemini 0.847 -0.001 -0.848
(0.74, 0.95) (-0.02, 0.01) (-0.94, -0.66)

Notes: This table summarises the posterior distribution of the main parameters of interest of the model
as of Equation (7) and Equation (11). Panel A contains posterior means of the threshold parameters
cr0 and cr1. The values in brackets correspond to the 99% credible regions. Panel B contains posterior
means and credible regions for the adjustment parameters αrk and the mean values µ from the different
regimes r. Inference is drawn based on Gibbs sampling procedures with Metropolis Hasting steps as
illustrated in the Appendix. The sample of parameters is generated with 50 parallel chains of length
20.000 after discarding 20.000 burn-in iterations.

In relation to the average absolute price difference, |δt|, the magnitudes of ĉr are

substantial, covering almost 63% of all observed price differences in the sample. Relative

to quoted spreads, latent arbitrage costs resemble more than 75% of the no-trade regions

implied by the data.

Panel B of Table 5 contains summary statistics of the posterior distribution of the

remaining parameters of interest, α̂rk and µ̂rk. The adjustment parameters αrk exhibit the

expected sign and reflect mean-reversion towards the law of one price whenever price

differences indicate a regime different from rt = no trade. Positive price differences

(rt = pos) imply that Bitstamp serves as a sell-side exchange and thus prices are expected

to decrease at Bitstamp and to increase at the buy-side exchange Gemini. The credible

regions of α̂0
k for a regime without arbitrage trading both contain zero, indicating that

price differences evolve as random walks and are not actively exploited. The spot drift
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terms µrk reflect behaviour in line with the adjustment parameters: In periods where

trading is profitable for arbitrageurs, price differences tend to decrease at both market.

The price dynamics further indicate that Gemini adjusts to price differences at a lower

rate than its competitor Bitstamp. This could be due to at least two reasons: Either the

price impact of arbitrageurs at Gemini is mostly absorbed or the rate of information

arrival at Gemini leads the market with Bitstamp subsequently adjusting its current

quotes.14

Next, I investigate the relationship between arbitrage costs and the liquidity com-

ponent in the spreads. The empirical results indicate that market fragmentation due to

constrained arbitrageurs activity plays a substantial role in cryptocurrency markets. As it

has been noted before, market fragmentation may foster adverse selection risks that could

harm liquidity provision. For instance, Foucault et al. (2017) notes that stale quote trad-

ing may impose adverse selection costs. However, it should be noted that cross-market

liquidity providers may also act as arbitrageurs and benefit liquidity providers.

Based on the theoretical framework developed in Section 4, adverse selection should

play a role in fragmented markets. Subsequently, shifts in arbitrage costs due to network

activity should also be reflected in the dynamics of the quoted spreads. To estimate

overall sensitivity of arbitrage costs due to network activity as of Equation (10), I turn

to the effect of network activity on quoted spreads, ∂Skt /∂xt.

The following empirical analysis rests on the observed spread at the two markets in

the sample. I estimate a vector autoregressive model of the form:(
SBitstamp
t

SGemini
t

)
=

(
γ1

γ2

)
+

(
ω1

ω2

)
xt +

(
ρ1

1 ρ1
2

ρ2
1 ρ2

2

)(
SBitstamp
t−1

SGemini
t−1

)
+ Γβ +

(
u1
t

u2
t

)
(16)

where xt is the (log) number of transactions waiting for verification at minute t as a

proxy for the arbitrage costs and ukt are potentially correlated normally distributed error

terms. Γ contains a host of control variables to explain quoted spreads. As controls, I

use exchange trading volume V k
t (see, e.g. Lin et al. (1995) and Stoll (1989)), the lagged

cross-market average midquote and the cross-market average minute level spot volatility

σt (see, e.g. Easley and O’Hara (1987)). I estimate the spot volatility using the procedure

proposed by Kristensen (2010).15

Table 6 illustrates the parameter estimates of the vector autoregressive structure as of

14In Section 4, I provide a theoretical model of asynchronous information arrival at fragmented markets
that incorporates different information arrival rates and could explain this result.

15I refer to Hautsch et al. (2019) for further information regarding estimating σt.
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Table 6: Spread decomposition.

Dependent variable:

SBitstamp
t SGemini

t

SBitstamp
t−1 0.455∗∗∗ 0.028∗∗∗

(0.001) (0.001)

SGemini
t−1 0.051∗∗∗ 0.552∗∗∗

(0.001) (0.001)

γ −13.593∗∗∗ −2.683∗∗∗

(0.115) (0.095)

xt −0.114∗∗∗ −0.051∗∗∗

(0.003) (0.002)

σt 5.818∗∗∗ 6.420∗∗∗

(0.136) (0.112)

q̄t−1 1.824∗∗∗ 0.419∗∗∗

(0.013) (0.011)

V Gemini
t 0.0003 0.004∗∗∗

(0.0004) (0.0003)

V Bitstamp
t 0.005∗∗∗ −0.003∗∗∗

(0.0002) (0.0001)

Observations 588,716

Parameter estimates of the Vector autoregressive model as of Equation (16). xt denotes the (log) number
of transactions waiting for verification, σt denotes the minute level spot volatility, q̄t is the cross-market
average midquote, V kt corresponds to trading volume (daily) at exchange k. Values in brackets denote p
values of the estimated parameters.

Equation (16). The parameters ω1 and ω2 are both negative, indicating that an increase

in the number of transactions waiting for verification decreases quoted spreads.

The empirical analysis reveals two different effects of a shift in the arbitrage costs for

arbitrageurs on the arbitrageurs participation constraint as of Equation (7). First, Panel

A of Table 5 illustrates a direct cost effect. More transactions waiting for verification

increase the price risks cross-market arbitrageurs in the Bitcoin market are exposed to

and consequently widen the no-trade region which constitutes the positive coefficient c1.

Second, an increase in network activity also narrows spreads.

In terms of arbitrage costs, the two effects above yield into different direction. To

quantify the net effect of network activity on arbitrage costs in blockchain-based market,

I return to Equation (10) which allows to decompose the two effects the effects.

A one percent increase of the estimated no-trade threshold crt due to an increase in
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network activity is associated with a 0.3 percent decrease of quoted spreads. There-

fore, the adjusted spreads partially compensate for increased arbitrage costs and lower

the burden of higher network activity for arbitrageurs. Overall, however, the effect of

settlement latency in blockchain-based markets on arbitrage costs is large and harms

price informativeness as it rationalizes persistent price differences across exchanges for

otherwise identical assets. After adjusting for exchange-specific components reveals that

network activity plays a major role beyond the documented market frictions in market

for cryptocurrencies such as severe exchange default risks.

4 Arbitrage and Liquidity in Fragmented Markets

The following theoretical model rationalizes the empirical results and serves as a baseline

framework to analyze the joint effect of a change of arbitrage costs, e.g. due to settlement

latency in fragmented markets on the activity of arbitrageurs and liquidity providers.

The quote dynamics of the theoretical model are nested within the more general

estimation framework presented in Section 3 to quantify arbitrage costs.

4.1 Market structure and participants

I assume there are two markets i and j. One risky asset is traded on both markets

simultaneously. The terminal value of the asset vT is uncertain and revealed to all market

participants at time T .16

Assumption 1. The value of the asset vt is a random variable which follows a Brownian

motion

vt = v0 +

t∫
0

σdWs (17)

where σ corresponds to the volatility and Wt denotes a Wiener process.

Two groups of agents populate both markets: First, one arbitrageur who stands ready

to exploit price differences between the two markets. The arbitrageur is the only partic-

ipant able to trade at both platforms simultaneously. Second, at each market k ∈ {i, j}
there are competitive risk-neutral market makers specialized in trading the asset on their

respective market.

16I assume that the expected time considered until the terminal payoff realizes is long relative to the
units of time in the setup below, similar in spirit to Baldauf and Mollner (2019).
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The arbitrageur is able to monitor quoted prices in real-time at both markets. When-

ever quoted prices imply a profitable arbitrage opportunity, the arbitrageur buys at the

market quoting the lower price, transfers the asset to the other market and sells. In order

to keep the framework parsimonious I assume the arbitrageur trades one unit of the asset

and thus the model abstracts from strategic choices of the order size. Two sources of

arbitrage costs may render an arbitrage trade too costly to conduct: First, liquidity in

form of bid and ask spreads that define the costs of buying or selling one unit of the asset

at time t at market k:

akt = qkt + Skt and bkt = qkt − Skt , (18)

where Skt denotes the quoted bid-ask (half) spread and qkt corresponds to the midquote

of market maker k at time t. An arbitrage opportunity occurs if markets are crossed,

e.g., the bid price at one market exceeds the ask price of the other market.

The second source of arbitrage costs are, for instance, latency-related costs and de-

noted as c ≥ 0. These costs are exogenous to the model. In the empirical analysis, these

costs arise due to technological barriers with respect to the speed and settlement fees of

the execution of the cross-market arbitrage trade.17 In principle, however, risk aversion

or capital constraints, for instance, can serve as valid examples for c as well, as long as

c is determined outside the model. For that purpose, network activity as a proxy for

settlement latency serves as a meaningful example of exogenous arbitrage costs as argued

in Section 3.

Arbitrage costs c ≥ 0 prevent the arbitrageur from trading if the cross-market differ-

ence between bid and ask is smaller than c. If instead c = 0, arbitrageurs exploit price

differences as soon as markets are crossed. Therefore, the arbitrageur trades at time t

if, for instance, the sell price on market i exceeds the buy price on market j such that

bit − a
j
t > c. The reverse case, bjt − ait ≥ c can be handled analogously.

Definition 3. The arbitrageur exploits any profitable cross-market price difference. I

define a profitable arbitrage opportunity as any situation in which

∣∣qit − qjt ∣∣ > c+ Sit + Sjt . (19)

Market makers determine the quotes that the arbitrageur faces. Each market maker

17Note for now that I assume that arbitrage costs arise as a fixed fee which is payable upfront the
transaction instead of incorporating the risky nature of payoffs that arises due to uncertain settlement
latency. Whereas this choice simplifies the model, I provide a direct mapping between arbitrage costs
due to settlement latency and the limits to arbitrage due to quote changes during the settlement latency
in Section 4.4.
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k ∈ {i, j} continuously commits to buy or sell one unit of the asset at the prices she

quotes, {akt , bkt }. akt corresponds to the (ask) price at t at which market maker k is willing

to sell, and bkt corresponds to the (bid) price at which she is willing to buy from sellers.

Market makers determine quotes conditional on their (private) information regarding the

asset value vt.

The information set of market maker k is determined as follows: I assume that the

starting value v0 at the initial date t = 0 is publicly known. For t > 0, however, new

information about the value of vt is only observable at randomly sampled discrete time

points, not necessarily simultaneous on both markets.

Market makers update their beliefs regarding the terminal payoff if they receive new

information. If an information event occurs on market k and time t, the current state

of the price process, vt, is revealed to the market makers at the respective market. For

market participants on the other market, however, this information is not available in real-

time.18 Instead, the arbitrageur is the only participant with the technology to monitor

and act on both markets. Asynchronous information arrival resembles the core of market

fragmentation in the theoretical model. It implies that informed investors are restricted

in their access to multiple market venues and instead only act locally.19 For the sake of

simplicity the framework above implies a rather strict form of market fragmentation that

is particularly severe for liquidity providers. I relax the restricted monitoring capacities of

market makers in the Appendix B and I show that the results remain qualitatively similar

when market makers are allowed to observe quote dynamics on the opposite market as

long as some valuation uncertainty remains.

Information arrives on market k at times
{

0, tk1, . . . , t
k
nk

}
, where I denote the time

between two information arrivals as τ kl := tkl − tkl−1 for l ∈ {1, . . . , nk}. I put some

structure on the sequence of random variables τ kl to obtain convenient analytical solutions

in the following definition.

Assumption 2. The sequence of information arrival times
{

0, tk1, . . . , t
k
n

}
follows a Pois-

son point process with parameter λk. Therefore, the inter-arrival times {τ kl }l=1,...,n are

independent exponentially distributed variables with mean E
(
τ k
)

= 1
λk

and probability

density function

π
(
τ k
)

= λk exp
(
−λkτ k

)
. (20)

18Evidence for such short-lived information asymmetries across markets is documented, for instance,
by Kotz et al. (2012) and Budish et al. (2015).

19I do not provide a microfoundation for the actual process of information acquisition in this paper.
Private information acquisition and how it is revealed through trading on local exchanges has been
analyzed in depth (see, e.g., Grossman and Stiglitz (1980) and Verrecchia (1982)).
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Intuitively, if λj > λi, news arrive more frequently on market j. An alternative but

equivalent interpretation of the information arrival process is the following: new infor-

mation about the current state of vt is revealed to the economy with inter-arrival times

{τ1, τ2, . . . , τnj+ni} which are exponentially distributed with parameter λ := λi + λj. If

new information arrives, it is revealed only either to market i with probability λi
λi+λj

or

to market j with probability
λj

λi+λj
. I provide a formal proof of the equivalence of this

statement and the information arrival processes in Assumption 2 in Appendix C.

After an information event at time tk, market maker k considers the signal vtk to

update her quotes. At time tk, the best predictor of market maker k of the terminal

payoff at T is vk
tk

= E (vT |vtk). Further, the valuation vk
tk

does not change until the next

information event which takes places not before (random) time tk + τ .

Competitive pricing at both markets implies that the quotes on market k reflect the

valuation E (vT |vtk) at all times. Therefore, if market maker k received her last signal at

tk, her quotes at t (where tk ≤ t < tk + τ) are

akt = vktk + Skt and bkt = vktk − S
k
t , (21)

where Skt denotes the quoted bid-ask (half) spread.

Order flow stems from noise traders that arrive continuously on both markets and can

be distinguished from the arbitrageur ex-post. I assume their expected arrival rate in a

marginal unit of time is 2λLdt > 0. Upon arrival, noise traders buy or sell a marginal

unit of the asset at one of the two markets with equal probabilities, independent of the

efficient price vt.

Two assumptions deserve more attention: First, the purpose of liquidity traders is to

provide a stream of order flow to market makers that is orthogonal to the actual value of

the risky asset and thus does not resemble any form of adverse selection risk for the market

maker. The presence of liquidity traders can be justified by (exogenously determined)

private hedging or liquidation needs. Moreover, the assumption that the market-maker

can ex-post distinguish arbitrageurs from liquidity traders clearly is a simplification. As in

Easley and O’Hara (1987), a justification for this form of self-selection can be competition

across arbitrageurs to exploit the potentially short-lived arbitrage opportunity which

implies that it is optimal to maximize the trading volume. Note however, that market

fragmentation implies that ex-ante the market makers cannot discriminate their prices

between liquidity traders and arbitrageurs.

Absent any cross-market trading, market makers in expectation do not lose anything
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Figure 4: Information revelation and decision making.

At t: MM i receives
information vt

vt+τ is
revealed

at j

Limits to Arbitrage
(
∣∣vitτ − vjt+τ ∣∣ ≤ c+Sit+τ+Sjt+τ )

1− π̃ i
τ

Arbitrageur exploits stale
quotes of i

π̃iτ

λjλi+λj

at i Quote updating

λi

λi+
λj

(λi + λj)dt

Notes: This figure illustrates the major elements of the theoretical framework: After market maker i
receives information at time t, the next information takes place either at the same exchange or market
makers i set of information becomes stale. The cross-market arbitrageur exploits the potential price
difference if and only if the trade resembles a profit, which happens with probability π̃iτ and depends on
the decision of the market maker and characterizes the equilibrium conditions.

and therefore do not require any compensation for providing liquidity. However, cross-

market arbitrage leads to adverse selection risk due to the inability of market makers to

cancel mispriced quotes before arbitrageurs exploit them (see, e.g. Budish et al., 2015).

Therefore, arbitrage opportunities arise if the quotes are stale in the sense that, for

instance, at t, the quotes of market maker i reflect current information but market maker

j still offers quotes based on her last signal received at tj < ti ≤ t. Such an event exposes

the market maker with the risk of selling to (buying from) the arbitrageur an asset at

a price which is too low (high). I make the simplifying assumption that a trade by an

arbitrageur resolves any information asymmetry and therefore triggers a new valuation

by the market maker. This assumption can be justified by direct competition or fast

information revelation in relation to the time it takes to monitor and trade on cross-

market price differences.

4.2 Equilibrium spreads

Next, I derive the equilibrium spreads at the individual markets in presence of an arbi-

trageur as a function of the arbitrage costs c and the information arrival rates λi and

λj. Figure 4 illustrates the relevant elements of the theoretical framework. Assume that

a news event occurs on market i at time t = ti. By Assumption 2, the time until the

next information event, τ , is exponentially distributed with parameter λ := λi + λj and

expected inter-arrival time E (τ) = 1
λ
. At time t + τ , new information arrives on one of

the two markets and the corresponding market makers update their quotes.
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I define the change of the signal regarding the terminal payoff of the asset during the

time period [t, t+ τ ] as δt,τ := vt+τ − vt. If information arrives for example on market j

at time t + τ and δt,τ > 0, the mid-quotes on market i will be too low. As a result, the

law of one price is violated.

However, Definition 3 implies that the arbitrageur trades only if the payoffs also exceed

the arbitrage costs, thus if |δt,τ | > c+ Sit+τ + Sjt+τ as in Equation (19). In the particular

example, the arbitrageur buys on market i, transfers the asset and sells on market j. The

payoffs and the trading strategy are reversed if, instead, δt,τ < 0. Upon arrival of news

at market j, adverse selection does only affect the opposite market maker i. From the

perspective of the individual market maker, there is no threat of quoting outdated prices

at the time when she receives information. Subsequently, at tk, competitive spreads of

market maker k are zero. Only the adverse selection component in the spreads of their

own markets is relevant for the market makers when it comes to their equilibrium spreads.

In the following Lemma, I derive the probability of an arbitrage trade from the per-

spective of market maker k ∈ {i, j}, τ units of time after she updated her quotes for the

last time.

Lemma 1. Given Assumptions 1 and 2, the probability of an arbitrage trade at time

tk + τ , πkτ (St+τ , c, σ) := P
(
|vtk+τ − vt| > St+τ + c | vt = vkt

)
is

πkτ (St+τ , c, σ) = 1− 2√
π

∫ c+St+τ
σ
√

2τ

0

e−z
2

dz. (22)

Further, πkτ (St+τ , c, σ) exhibits the following characteristics

∂πkτ
∂τ

> 0,
∂πkτ
∂St+τ

< 0,
∂πkτ
∂c

< 0,
∂πkτ
∂σ

> 0. (23)

Proof. See Appendix.

Large price changes |δt,τ | are more likely if the time interval since last arrival of infor-

mation, τ , is long, or if the volatility of the price process, σ is high. In particular,

Assumption 1 and the random arrival rate of new information both imply that the un-

conditional volatility of the change of the value, V (|δt,τ |) is σv :=
√

σ2

2λ
. As a consequence,

the likelihood of a profitable arbitrage opportunity that exceeds the threshold St+τ + c

increases with volatility σ and the expected waiting time, λ−1.

Lemma 1 shows that the total arbitrage costs, St+τ + c, affect the activity of the

arbitrageur in a straightforward manner: The probability that the valuation difference
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|δt,τ | exceeds the threshold that makes the arbitrage opportunity profitable decreases with

the quoted spread St+τ and c. Whereas c is exogenous, market makers control the spread

based on their knowledge about the total arbitrage costs paid by the arbitrageur at both

markets. A higher spread makes it less likely that the change of vt during the time interval

[t, t + τ ] exceeds the boundaries implied by the arbitrageurs participation constraint as

of Definition 3. The extreme case of the spread St+τ approaching infinity corresponds to

a zero probability event of arbitrage activity. At the other extreme, even if the market

marker quotes a zero spread, the presence of arbitrage costs, c > 0, implies a positive

probability that the absolute differences in valuation, |δt,τ | do not exceed arbitrage costs c.

If an information event occurs at time t+τ , the price process is revealed with probabil-

ity λi
λi+λj

on market i or with probability
λj

λi+λj
on market j. In the first case, market maker

i updates her quotes and shifts vit correspondingly. As discussed above, this scenario does

not leave any uncertainty for market maker i, and trading against the arbitrageur does

not expose her to any adverse selection risk. In the second case, market maker j updates

her quotes whereas market maker i is not fast enough to react. If the arbitrageur does not

get active because the differences in valuation do not offset the quoted spreads, neither

market maker i nor j earn or lose anything and price differences persist. Conditional

on the set of information of the market maker k, πiτ (St+τ , c, σ) denotes the probability

that the arbitrageur exploits an occurring price difference. Market maker i earns the

spread but trades against the arbitrageur at stale quotes and her expected losses condi-

tional on an arbitrage trade amount to Sit+τ − E
(
|δt,τ |

∣∣Sit+τ + c ≤ |δt,τ |
)

. The following

lemma summarizes the expected profits of market maker i during the period of time

[ti + τ, ti + τ + dt) for small dt.

Lemma 2. Under assumptions 1 and 2, the expected profits of market maker i at d(ti+τ)

with spread S are

E (Πi,t+τ (S)) = λLS︸︷︷︸
Profit from

noise trading

+
λj

λi + λj

πτS − σ
√

2τ

π
exp

(
−(S + c)2

2τσ2

)
︸ ︷︷ ︸

Expected loss from stale quote

 . (24)
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The expected profit of market maker i at d(t+ τ) exhibit the following characteristics:

∂E (Πi,t+τ (S))

∂λL
> 0,

∂E (Πi,t+τ (S))

∂λi
> 0,

∂E (Πi,t+τ (S))

∂λj
< 0,

∂E (Πi,t+τ (S))

∂τ
< 0,

∂E (Πi,t+τ (S))

∂σ
< 0,

∂E (Πi,t+τ (S))

∂c
> 0.

Proof. See Appendix.

The expected gains from trading against the arbitrageur are always negative. As trading

takes place only if the difference in the valuation exceeds at least the spreads, the losses

conditional on this event always exceed the spread because

Skt+τ + c ≤ E
(
|δt,τ ||Skt+τ + c < |δt,τ |

)
. (25)

Expected profits can only become non-negative, if λL > 0 because noise trades compen-

sate the market maker for providing liquidity even in anticipation of trading against the

arbitrageur.

A higher spread S increases expected profits due to higher expected gains from trading

with liquidity traders and it reduces the likelihood of arbitrage activity as shown in

Lemma 1. Lemma 2 reflects that if information arrives on market k, profits would be

strictly positive for Skt+τ > 0 at that point in time (τ = 0), due to the absence of any

asymmetric information. Therefore, local competition forces market makers to set their

spreads to zero at the time of information arrival.

From the perspective of market maker k at time tk + τ it is uncertain if the next

information event will occur at her market or if she will be exposed to stale quote trading.

Consequently, large λk decreases the likelihood of an (adverse) information event and

therefore decreases expected losses of market maker k. Conversely, if the probability of

information arrival on the opposite market increases, the expected profits decrease.

Next, I characterize the equilibrium spreads S̃kt+τ . Equilibrium is characterized by

market makers at both markets setting their spreads such that at every point in time,

the expected profits at d(tk+τ) are zero due to local competition. Further, in equilibrium,

arbitrageurs mechanically exploit price differences whenever profitable according to their

participation constraint in Definition 3.

Definition 4. In equilibrium for λk > 0, after an information arrival on market k at

time tk, the competitive spread of market maker k at time tk + τ is the maximum of zero
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and the unique root of the equation

E
(

Πk,tk+τ

(
S̃tk+τ

))
= 0. (26)

Equilibrium spreads S̃k
tk+τ

are the minimum required spreads such that market makers

earn zero expected profits. Requiring higher spreads is not a feasible solution due to

competition among market makers on market k. Reversely, less compensation than S̃k
tk+τ

,

both increases the likelihood of arbitrage trading and reduces profits from uninformed

order flow and thus would render losses for the market maker.

By Lemma 2, the equilibrium spreads are strictly positive but diverge to infinity for

λL → 0 which is in line with the common notion of the non-existence of an equilibrium

in absence of belief dispersion (Grossman and Stiglitz (1980)). The arrival rate of noise

traders determines the relation between losses due to trading activity from arbitrageurs

and gains from trade without any subsequent price adjustment. For λL → ∞, instead,

the market maker is able to compensate her losses due to the high arrival rate of liquidity

traders and equilibrium spreads S̃k
tk+τ

converge towards zero (similar to vanishing price

impact as described by Kyle (1985)). Further and in line with well-established results,

equilibrium spreads increase with volatility σ (Easley and O’Hara (1987)) which renders

information asymmetries more costly for the market maker. Similarly, Table 6 indicates

that spreads at cryptocurrency exchanges increase with spot volatility as a measure of

uncertainty.

The arrival rate of information, λ = λi + λj, constitutes an important parameter,

both for the equilibrium spreads but also for the informativeness of quoted prices in

general. Faster information arrival decreases the volatility σv and therefore reduces the

adverse selection risk. However, from the perspective of the individual market maker,

the probability of information arrival at her own market, λk
λ

, is the relevant measure of

adverse selection risk.

Keeping everything else equal, higher costs c reduce the likelihood of an arbitrage event

π̃kτ and reduce the threat of stale quote trading. However, conditional on an arbitrage

event, higher costs c also increase the expected losses due to trading for the market maker.

As characterized in Lemma 1, an increase of the arbitrage costs c increases the expected

profits of the market maker (and therefore the equilibrium spreads become smaller).

Figure 5 illustrates the trade-off between a shift of technology-related arbitrage costs,

c, and the total arbitrage costs, S̃it(c) + S̃jt (c) + c. The figure shows the gradient of the

total costs for the arbitrageur as a function of the exogenous arbitrage costs, c. Increas-
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Figure 5: Gradient of aggregated arbitrage costs.

Notes: This figure illustrates the effect of a marginal increase of the technology-related arbitrage costs,
c on the total arbitrage costs S̃it(c) + S̃jt (c) + c. The different lines correspond to shifted values of the
volatility σ of the efficient price process. Brighter lines denote larger volatility.

ing the arbitrage costs c has two effects on the arbitrageurs’ activity: first, it directly

increases total arbitrage costs as it shifts the minimum price difference required before

the arbitrageurs prefers to trade. Second, the endogenous component of the costs de-

creases due to the reduced spreads in response to lower threat of adverse selection. As

postulated before, for large enough values of c, the spreads converge towards zero and

therefore the aggregate arbitrage costs increase linear with c. The figure illustrates that

regions exist for which the total costs of the arbitrageur even decrease if c increases. Intu-

itively, this seemingly puzzling result occurs when a marginal increase in c substantially

decreases the probability of trading and thus simultaneously relaxes the zero expected

profit constraints of the individual market makers.

As a main result, the theoretical model reconciles the empirical findings that higher

settlement-latency related costs due to network activity are associated with wider spreads

due to limits to arbitrage. Further, focussing on the Bitcoin network indicates that that

an increase in network activity is associated with large no-trade regions, thus there is

no evidence that the gradient of aggregated arbitrage costs is negative and thus the

endogenous component of the arbitrage costs (spreads) seems to play a minor role relative

to the high costs related to settlement fees and latency.

The results visualized in Figure 5 indicate, however that the reduction of arbitrage

costs (for instance by improving the throughput of blockchain consensus systems), does
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i) comes at the cost of increased adverse selection component in the spreads and ii) may

even be harmful for arbitrageurs in the sense that for low values of c the adjustment in

the spreads more than overcompensates the initial gains.

The figure further illustrates that adverse selection costs from the perspective of mar-

ket makers play a major role when volatility σ is large. Increasing σ corresponds to

increasing the relevance of the endogenous component in the arbitrage costs. Increasing

c may thus be beneficial for both, arbitrageurs and liquidity providers (depicted by the

negative gradient of aggregated arbitrage costs). The focus on volatility is especially

relevant in light of the findings of, for instance, Pagnotta and Philippon (2018) and

Zimmerman (2020), arguing that decentralized consensus mechanisms and the usage of

cryptocucrencies for both, payment and investment purposes may induce excess volatility,

rendering Bitcoin less attractive as a stable payment vehicle.

4.3 Price informativeness

In the theoretical model, quoted prices can deviate from the efficient price for two reasons.

On the one hand, the efficient price process vt is observable only at infrequent points

in time. On the other hand, information is revealed asynchronous due to absence of

(profitable) arbitrage opportunities.

The frequency of information arrival events, (λi + λj)
−1 determines the aggregate

deviation of quoted prices from the underlying efficient price process. Arbitrage activity,

which depends on c and S̃kt , in fact only facilitates cross-market information aggregation

and enforces price informativeness by updating prices across markets. Figure 6 illustrates

both determinants of mispricing. All three panels are based on a simulated time series.

The grey line corresponds to the latent efficient price process and the red and blue

lines denote the midquotes at both markets. The efficient price process evolves as a

Brownian motion in line with Assumption 1 and information is revealed with independent

exponential distributed waiting times as in Assumption 2. During the remaining time

no additional information is available regarding the current value of vt, constituting one

source of mispricing. Jumps in the lines correspond to information arrivals and illustrate

updated information sets of the market makers. The shaded areas correspond to the

aggregate arbitrage costs (the sum of quoted spreads and exogenous costs c).

Panel A illustrates the case without any exogenous arbitrage costs, i.e., c = 0.

Whereas spreads increase with the waiting time τ since the last information arrival event,

quoted price differences are bounded within narrow intervals as the arbitrageur continu-
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Figure 6: Simulated Price Paths.

Panel A: No technology-related arbitrage costs (c = 0).

Panel B: Absence of arbitrageur (c→∞).

Panel C: Intermediate technology-related arbitrage costs (0 < c <∞).

Notes: This figure shows three outcomes based on one simulated Wiener process vt (black dots). Time
is plotted on the x-axis. Information inter-arrival times are exponentially distributed. Information is
revealed at one of the two markets with the equal probabilities (λi = λj). The blue (red) line corre-
spond to the quoted mid-prices of the two markets. The shaded area corresponds to the corresponding
(equilibrium) spreads. Arbitrage trades are indicated with green dots.
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ously monitors and eventually performs cross-market trades. The green dot corresponds

to a arbitrage transaction and subsequent adjustment of quotes at both markets.

On the other extreme, Panel B of Figure 6 corresponds to the case with prohibitively

high exogenous arbitrage costs, thus c→∞. In this case the adverse selection component

in the spreads is negligible because the probability of an arbitrage trade π̃τ

(
S̃k
tk+τ

, c, σ
)

is close to zero. Therefore, quoted spreads at both markets are zero. Price differences,

however, can persist within wider bands. In fact, in the most extreme case both markets

are entirely decoupled and quotes are only updated with (market-specific) intensities λi

and λj. Panel C illustrates the intermediate case where c constitutes one source of limits

to arbitrage but does not fully prevent arbitrageurs activity. As a result, spreads are

positive but smaller in magnitudes than in Panel A.

I derive the aggregate level of price informativeness as the unconditional expected

mispricing prevalent in the aggregated market which I define in the following proposition.

Proposition 1. Under Assumption 1 and Assumption 2 the expected (L1-) error of the

aggregated quoted prices is

E
(∣∣vt − qit∣∣+

∣∣vt − qjt ∣∣) =

√
σ2

2
E (τ)Ψ (c) (27)

where E (τ) = 1
λi+λj

and Ψ (c) :=
√

1+λj/λi

1+E
(
π̃iτ

(
S̃i
ti+τ

,c,σ
))

λj
λi

+
√

1+λi/λj

1+E
(
π̃jτ

(
S̃j
tj+τ

,c,σ
))

λi
λj

.

Proof. See Appendix.

Proposition 1 illustrates the fundamental trade-off between price informativeness and

endogenous spreads in a setting with exogenous arbitrage costs: First, the expected

pricing error is always positive and increases with the volatility of the efficient price

process σ and the expected inter-arrival times E (τ) = 1
λ
. Both components increase the

uncertainty with respect to the true value. The role of the arbitrageur can be understood

as increasing the speed with which information is reflected at the individual markets. In

the case of prohibitive high arbitrage costs (c→∞) arbitrageurs never trade (π̃k = 0) and

the arrival rates of information at both market do not change. In that case lim
c→∞

Ψ(c) =(√
λi+λj
λi

+
√

λi+λj
λj

)
and the expected pricing errors are

lim
c→∞

E
(∣∣vt − vit∣∣+

∣∣vt − vjt ∣∣) =

√
σ2

2

(√
E (τi) +

√
E (τj)

)
. (28)
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Intuitively, Equation (28) resembles the mispricing of two independent markets. On the

contrary, if exogenous arbitrage costs c are small, the probability of an arbitrage event on

market i given information arrived at the opposite market may become positive (π̃iτ > 0).

In that case, the expected arrival rate of information on market i increases to λ̃i :=

λi + E (π̃i)λj. The increased information arrival rate can be interpreted as information

spillover across the markets, whereby arbitrageurs extract the corresponding rent from

market makers. The similar effect holds for market j such that λ̃j := λj +E (π̃j)λi. Due

to the adverse selection component in the spreads the probability of an arbitrage event

π̃kτ will never reach one even if arbitrage costs c are 0 and is thus bounded from above.

The resulting difference can be interpreted as the (informational) friction that arises due

to the presence of market fragmentation.

Removing the friction of fragmentation and instead allowing all participants to trade

on a consolidated orderbook would make cross-market trading superfluous and could be

interpreted as E
(
π̃kτ
)

= 1 which would result in the highest attainable value of price

informativeness with

E
(∣∣vt − qit∣∣+

∣∣vt − qjt ∣∣) E(π̃kτ )=1
=

√
2σ2E (τ). (29)

In case of Equation (29), the only source of mispricing that prevails is due to the asyn-

chronous arrival of information in the economy. Subsequently, for increasing λ, pricing

errors converge to zero. Figure 7 shows the value of the multiplier Ψ(c) for intermediate

values of c, resembling the case with exogenous arbitrage costs and endogenous adverse

selection component in the spreads. Without exogenous arbitrage costs, endogenous

liquidity-related arbitrage costs induce persistent mispricing. For increasing values of c,

Ψ(c) gradually converges towards entirely fragmented markets as of Equation (28).

As a final step of the analysis, the theoretical framework allows to compare the joint

equilibrium outcomes of liquidity (measured in the endogenous adverse selection com-

ponent in the spreads) and price informativeness (in terms of the inverse of expected

aggregate pricing errors). As discussed in Lemma 2, an increase in latency related arbi-

trage costs, c, reduces the adverse selection component of the spreads because the lower

probability of arbitrage trading relaxes the zero expected profits constraint of the mar-

ket makers. On the other hand, price differences remain unexploited if arbitrage costs

are large and reduce the speed of information revelation across markets. As spreads

increase with vanishing arbitrage costs, market markers’ anticipation of the arrival of

arbitrageurs is already sufficient to generate limits to arbitrage in terms of higher total
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Figure 7: Mispricing Multiplier.

Notes: This figure illustrates the relation between the mispricing multiplier Ψ(c) and the exogenous
arbitrage costs c as of Proposition 1.

arbitrage costs, c + S̃it + S̃jt . Therefore, market fragmentation harms informational effi-

ciency because the rate of information arrival is smaller than the hypothetical equivalent

of integrated markets, i.e., λ̃k < λi + λj. Figure 8 shows equilibrium spreads and pricing

errors as a function of arbitrage costs c and shows that price informativeness (in terms of

lower expected aggregate pricing errors) can only be achieved if arbitrage activity is high.

The figure shows expected pricing errors on the x-axis and equilibrium spreads on the

y-axis. Each line corresponds to the equilibrium values based on different values of the

exogenous arbitrage costs, c, keeping everything else equal. Bright color corresponds to

high technology-related arbitrage costs c, dark color indicates low values of c. The figure

shows that for high arbitrage costs (at the lower right hand side) the expected pricing

error is generally higher than for lower values of c because the expected arrival rate of

new information reaches its minimum, 1
λi

+ 1
λj

. The corresponding equilibrium spreads,

however, are lowest for high values of c due to the reduced threat of adverse selection.

Decreasing c (at the upper left hand side) increases arbitrage activity, thus widens the

quoted spreads of the market makers. Further, the expected pricing error decreases be-

cause Ψ(c) converges to its lower limit. Note, that the end points of the lines at the left

tails correspond to the extreme case with no exogenous arbitrage costs c. Here, total

arbitrage costs, S̃it + S̃jt arise entirely endogenous and therefore limit the expected pricing

error from below. The different lines in the figure correspond to shifts in the volatility σ of

the efficient price process. The lines to the left represent small volatilities which have two
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Figure 8: Equilibrium Price Informativeness and Liquidity.

Notes: This figure summarizes the (sub)-space of equilibrium outcomes for the expected pricing error
and the equilibrium spread as functions of arbitrage costs c. The different lines correspond to shifted
values of the volatility σ of the efficient price process. Colors denote the exogenous arbitrage costs,
c, whereas brighter colors correspond to larger values. Pricing error denotes the expected L1 norm of
aggregate mispricing according to Proposition 1 and the equilibrium spreads are according to Definition
4.

effects: first, smaller uncertainty regarding the efficient price corresponds to less adverse

selection and smaller spreads and second, the expected pricing error decreases.

The analysis with respect to price informativeness as a response to arbitrage costs c is

closely aligned with the empirical findings related to cryptocurrency markets. First, note

that arbitrage costs c provide the fundamental justification for persistent deviations from

the law of one price and are the cause for aggregate mispricing. The theoretical frame-

work thus does not only rationalize the effect of network activity on quoted spreads, but

instead also suggests that settlement latency hampers price informativeness. Although

the empirical analysis does not allow to identify the fundamental value vt of Bitcoin it

nevertheless provides an identification strategy to estimate the otherwise latent arbitrage

costs c which depends on the implied quote dynamics of the theoretical framework.

More specifically, note that information revelation at the two fragmented markets

implies that the midquotes at time t reflect the (possibly) stale belief of the market

makers about the current value of qt. Midquote price differences between market i and

market j, however, are stationary even in absence of any arbitrage trading because as
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long as information arrival times are stationary the distribution of ti − tj is stationary:

zt := qit − q
j
t =

(
qit − qt

)
−
(
qjt − qt

)
=

t∫
ti

σdWs −
t∫

tj

σdWs = ±
tj∫
ti

σdWs ∼ I(0). (30)

Equation (30) confirms that the law of one price exhibits a valid cointegration relationship.

Also, Equation (8) nests the price dynamics implied by the theoretical framework.

First, quote adjustments do not occur on market k continuously but at irregular frequen-

cies τ kl . Therefore, the noise process uk
tk

exhibits volatility V
(
ukt
)

=
√

2σ2λ−1
k . Second,

setting αpos
i = 0, αpos

j = 1 and αneg
i = −1, αpos

j = 0 ensures corresponding price pressure

if news occurred either on market i or on market j. The econometric framework is less

strict in the sense that it does not require to reveal all information from arbitrage trades

instantaneously and instead allows gradual adjustments of the quoted prices at both,

the buy and the sell market. The resulting dynamics fully recover the dynamics of the

theoretical model. In this case, if, for instance, information arrived on market i at time

til and triggered an arbitrage trade, it holds thatvitil−1

vj
til−1

+

(
∆vi

til

∆vj
til

)
=

vitil−1

vj
til−1

+

(
0

1

)
zt−1 =

vitil−1

vi
til−1

 . (31)

4.4 Settlement latency as a specific example for c

The empirical analysis rests on latency-related arbitrage costs in terms of risky arbitrage

payoffs due to settlement latency. As shown, direct costs do arise in form of settlement

fees paid to provide incentives to miners to pick up the arbitrageurs transaction. Costs,

however, also do arise simply by the time-consuming settlement process which may render

seemingly profitable arbitrage strategies undesirable to exploit. In this section, I show

that the time it takes to transfer an asset between two markets, implies costs for the

arbitrageur which resemble technology-related arbitrage costs c in the framework above.

Settlement latency is a market friction which arises, for instance, for any asset where

legal change of ownership is recorded on a blockchain (Hautsch et al., 2019). Settlement

latency prevents the arbitrageur from selling instantaneously, as the transfer of assets

to the more expensive market and subsequent sale is only possible with a certain delay.

Latency τa > 0 is the (possibly random) waiting time until settlement occurs and affects

the relative speed of the arbitrageur. The longer the waiting time, the higher the likeli-
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hood that the market maker updates her quotes and therefore the arbitrage opportunity

disappears.

Assumption 3. Settlement latency τa > 0 is the time it takes to transfer an asset between

the two markets. An asset can be sold at a market only, if the arbitrageur is in possession

of this asset, thus, only if the legal change of ownership has been completed.

Consider for now the following example: new information arrives on market i at time t.

Settlement latency then implies that during the time period [t + τa) the market maker

on market i is not at risk of quoting stale quotes and trading against an arbitrageur at

outdated prices. Furthermore, at time t+ τ where τ > τa, the market maker knows that

an arbitrageur may have exploited price differences which occurred τ − τa periods after

she updated her quotes last. Therefore, the implied volatility of price changes from the

perspective of the market maker, is V (|vt+τa − vt|) =
√
σ2 (τ − τa) which is lower than it

would have been without settlement latency (τa = 0). The following lemma shows that

from the perspective of the market maker, settlement latency can be interpreted as giving

her a time advantage relative to the arbitrageur:

Lemma 3. Under assumptions 1, 2 and 3 at τ > τa, the expected profits of market maker

i at d(t+ τ) are

E
(
Πs
i,t+τ (S)

)
= λLS +

λj
λi + λj

(
π̃sτ−τaS − σ

√
2 (τ − τa)

π
exp

(
− S2

2 (τ − τa)σ2

))
. (32)

Here, π̃sτ−τa = 1− 2√
π

∫ S

σ
√

2(τ−τa)
0 e−z

2
dz. For τ ≤ τa,

E
(
Πs
i,t+τ (S)

)
= 0 ⇔ S = 0. (33)

Further, it holds that
∂E
(
Πs
i,t+τ (S)

)
∂τa

> 0. (34)

Proof. See Appendix.

Lemma 3 takes into account that the (risk-neutral) arbitrageur upon observing a price

difference at time t does only trade if expected profits are positive. This is the case, if

|δt,τ | > E (St+τ+τa) ≥ St+τ . Abstracting from any other costs for the arbitrageur, settle-

ment latency imposes limits to arbitrage in the sense that price differences are exploited if

and only if the hypothetical instantaneous returns exceed the (latency-adjusted) spreads.
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Figure 9: Settlement Latency and Equilibrium Spreads.

Notes: This figure shows the effect of settlement latency τa on the equilibrium spreads. The case with
no latency is equivalent to the benchmark case in Lemma 2 with c = 0. Brighter lines denote larger
volatility.

Figure 9 illustrates the effects of settlement latency on the quoted spreads: the blue

line shows the equilibrium spreads for different values of τa. Higher values of τa indicate

longer expected waiting times for the arbitrageur and correspond to higher price risk for

the arbitrageur.

Therefore, the main result of Lemma 3 justifies the modelling choice of arbitrage costs

c which increase in settlement latency and thus in network activity. Also note, that in

contrast to the modelling framework of Hautsch et al. (2019), risk aversion does not play

a role to determine arbitrage costs. Instead, in the framework above, price differences are

mean-reverting due to the error correction mechanism of both, arbitrageurs activity and

information revelation. Therefore, even for risk-neutral arbitrageurs settlement latency

may impose limits to arbitrage.

5 Conclusions

Fragmented trading characterizes nowadays financial market infrastructure - similar as-

sets are traded on multiple venues that differ with respect to transparency, order types

and, more generally, access for investors. Price informativeness, however, requires that

cross-market arbitrageurs monitor and exploit price differences such that quoted prices

at all markets ultimately incorporate information regarding the fundamental value of the

underlying asset. This pivotal role of arbitrage activity evaporates when market frictions
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render cross-market trading costly and impose limits to arbitrage.

Cryptocurrencies are one particular asset class that exhibits substantial market frag-

mentation and simultaneously imposes considerable arbitrage cost related to blockchain-

based settlement. In this paper, I analyze the implications of blockchain-related settle-

ment latency (see, e.g. Hautsch et al. (2019)) on arbitrage activity and liquidity providers.

I find that faster settlement reduces latency-related arbitrage costs but at the same time

increases quoted bid-ask spreads. Thus, the effect of reducing the latency-related arbi-

trage costs is partially offset by an increase in costs related to liquidity. In extreme cases,

this substitution effect can even predominate and therefore harm price informativeness.

The main econometric challenge hereby is to estimate arbitrage costs, which are gen-

erally not observable. When arbitrageurs enter the market and start to exploit price

differences, however, associated price pressure towards the law of one price should reveal

their activity. Arbitrage trading therefore implies a cointegration relationship between

markets. Whenever arbitrage costs do not render arbitrage trades profitable (e.g., price

differences fall within a no-arbitrage regime) the correction mechanism should evaporate.

I exploit high-frequency orderbook data of two of the largest cryptocurrency exchanges

to estimate the no-arbitrage regimes. More specifically, I provide a (Bayesian) estimation

procedure to parametrize the thresholds as functions of latent exchange-specific arbitrage

costs and time-varying observable proxies for arbitrage costs. The parametrization al-

lows to decompose arbitrage costs into liquidity- and latency-related components. The

number of transactions waiting for verification serves as a measure of network activity

that increases the price risks of arbitrageurs.

I show that faster settlement reduces arbitrage costs. More specifically, an increase of

one percent in the number of transactions waiting for verification implies around 2 basis

points wider no-trade regions for arbitrageurs. Most importantly, however: This finding

does not necessarily imply that developing faster consensus protocols ultimately benefits

price informativeness. Instead, I also document that faster settlement is associated with

larger spreads. In fact, my findings suggest that a 10 basis point decrease in technology-

related arbitrage costs is associated with a 3 basis point increase in spreads. The partially

offsetting effects suggest that efforts to reduce the latency of blockchain-based settlement

might have unintended consequences for liquidity provision which in extreme cases could

even harm informational efficiency.

I back the empirical evidence by theoretical reasoning and embed my results in a

model in which liquidity providers anticipate that arbitrageurs exploit stale quotes more

frequently if settlement is fast and thus set wider spreads to cope with the adverse se-
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lection risk. As a result, the direct effect of faster settlement on price informativeness is

offset by larger liquidity-related arbitrage costs.

Ultimately, the empirical analysis of cryptocurrency data addresses the fundamental

question how settlement procedures that rely on distributed ledger technologies affect

market efficiency. In the recent past, for instance, the number of cryptocurrency ex-

changes across the globe has grown significantly. At the same time, frictions due to the

time-consuming settlement latency impose limits to arbitrage that cause deviations from

the law of one price to persist. The limited capacities of distributed consensus protocols

served as motivation to decrease blockchain related frictions (e.g. Segregated Witness,

an implemented soft fork change in the transaction format for Bitcoin was also intended

to mitigate the transaction speed problem). However, the findings of this paper suggest

that price informativeness and narrow spreads are hard to achieve if market makers fear

adverse selection.

Reversely, the consolidation of the highly fragmented US equity market landscape

(Regulation National Market System Rule 611) seems to be a way to foster price infor-

mativeness by reducing latency-related frictions for cross-market trading. However, the

growing debate on intentional access delays, as a means to hamper cross-market liquid-

ity taking activities sheds light from a different perspective on a very similar trade-off

between price informativeness and adverse selection risks. In this particular example,

however, liquidity providers criticize the absence of latency-related costs and claim that

adverse selection risks impose disproportionally high costs on all market participants.

This paper provides a first step on discovering the implications and potential draw-

backs of blockchain-based settlement in financial markets. Certainly, frictions due to

settlement latency do not only affect liquidity providers and arbitrageurs but could ar-

guably affect incentives for informatoin acquisition in general and, more generally, may

impose spoll-over effects to overall market efficiency by harming liquidity-taking activities

(see, e.g. Kyle and Xiong (2001)). Such an analysis would certainly be interesting, but

is left for future research.
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Appendix

A Proofs

Proof of Lemma 1. First, I derive the distribution of |vt+τ−vt| given information available

at time t. Assumption 1 implies that given vt and τ , the distribution of δt,τ = vt+τ − vt
is Gaussian with mean 0 and variance

√
τσ. Then, |δt,τ | corresponds to a half-normal

distribution with probability density function

π(|δt,τ |) =

√
2

σ
√
τπ

exp

(
−|δt,τ |

2

2τσ2

)
. (A1)

The half-normal distribution has mean
√

2τ
π
σ. The probability of |δt,τ | > z for z > 0 is

π (|δt,τ | > z) = 1− erf

(
z√
2τσ

)
(A2)

where erf (·) corresponds to the Gauss error function defined as

erf

(
z√
2τσ

)
:=

2√
π

∫ z√
2τσ

0

e−x
2

dx. (A3)

The derivatives follow immediately from

∂erf (x)

∂x
=

2√
π

exp−x
2

. (A4)

Proof of Lemma 2. First, I derive the expected losses of the market maker k conditional

on an information event at the opposite market. After an information event occurs, the

arbitrageur trades if the difference in valuation, |δt,τ | exceeds the limits to arbitrage given

by the threshold c+ Skt+τ . Therefore, it holds that

E (|δt,τ | | c+ St+τ < |δt,τ |) =

∫∞
c+Skt+τ

|δt,τ |π(|δt,τ |)d|δt,τ |

1− P (|δt,τ | < c+ Skt+τ )
. (A5)

From Lemma 1, |δt,τ | follows a half-normal distribution. Thus, the denominator of Equa-

tion (A5) can easily be derived as π̃t, whereas for the nominator I make use of the fact

that π(|δt,τ |) = 2φ
(
δt,τ
σ
√
τ

)
for δt,τ ≥ 0, where φ (·) is the probability density function of
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the standard normal distribution. Then, I get

∫ ∞
c+Skt+τ

|δt,τ |π(|δt,τ |)d|δt,τ | =
√

2

τπσ2

∫ ∞
c+Skt+τ

δ exp

(
− δ2

2σ2τ

)
dδ =

√
2τσ2

π
exp

(
−
(
Skt+τ + c

)2

2σ2τ

)
.

(A6)

Therefore, the expected loss from trading against arbitrageurs is

π̃τ

(
Skt+τ −

1

π̃τ

√
2τσ2

π
exp

(
−
(
Skt+τ + c

)2

2σ2τ

))
. (A7)

Note, that for
∂E(Πi,t+τ (S))

∂c
the following holds (based on Lemma 1):

∂π̃i,τ (S)

∂c
=−

√
2

πτσ2
exp

(
−
(
Skt+τ + c

)2

2σ2τ

)
. (A8)

Then, it holds that

∂E (Πi,t+τ (S))

∂c
=

√
2

πτσ2
exp

(
−
(
Skt+τ + c

)2

2σ2τ

)
(St+τ + c− St+τ ) > 0 (A9)

Proof of Proposition 1. First, I derive the distribution of the pricing error |zkt | := |vkt −vt|.
Assumption 1 implies that given vkt = vt−τ for known τ , the distribution of zkt = vt− vt+τ
is Gaussian with mean 0 and variance σ2τ . However, τ is a random variable which follows

an exponential distribution with parameter λk. Therefore, the characteristic function of

the stopped Wiener process zkt is

ϕzkt : R→ C (A10)

ϕzkt (s) = E
(
eisz

k
t

)
= E

(
E
(
eisz

k
t | τ

))
(A11)

= E
(
e−τσ

2s2/2
)

(A12)

= λk

∫ ∞
0

e−(λk+σ2s2/2)t dt (A13)

=
1

1 + σ2s2

2λk

. (A14)

Equation (A14) corresponds to the characteristic function of a Laplace distribution with
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expected value E (z1kt) = 0, scale parameter
√

σ2

2λk
and corresponding probability density

function

π
(
zkt
)

=

√
λk
2σ2

exp

(
−
√

2λk
σ2

∣∣zkt ∣∣
)
. (A15)

By equation (A15), the distribution of |zkt | ∝ exp

(
−
√

2λk
σ2

∣∣zkt ∣∣) corresponds to the kernel

of an exponential distribution with rate parameter
√

2λk
σ2 . Therefore, the expected (L1)

difference between quoted price vkt and efficient price vt is

E (|zt|) =

√
σ2

2
E (τ). (A16)

Then, for independent information arrivals (π̃t = 0) the expected pricing error is additive:

E
(∣∣vt − vit∣∣+

∣∣vt − vjt ∣∣) =
σ√
2

(
1√
λi

+
1√
λj

)
(A17)

=

√
σ2

2
E (τ̃)

(√
λi + λj
λi

+

√
λi + λj
λj

)
. (A18)

Here, E (τ̃) := 1
λi+λj

is the expected inter-arrival of information at the economy and the

adjustment terms
(√

λi+λj
λi

+
√

λi+λj
λj

)
> 1 are related to the odds of information arriving

on marketk. Next, arbitrage activity increases the arrival rate of information at the

individual markets. More specifically, recall that Assumption 2 implies that information

arrives at the economy with rate λ̃ := λi + λj and is then revealed on marketk with

probability λk
λi+λj

. Given an information event on marketj, the probability of a trade

is characterized by π̃iτ as of Lemma 1 which depends on the arbitrage costs c and the

equilibrium spreads S̃iτ .

Therefore, by the properties of the exponential distribution, the (expected) arrival rate

of information on marketi is λ̃i = λi + λjE (π̃i) > λi and similar λ̃j = λj + λiE (π̃j) > λj.

Replacing λi and λj in the adjustment term of Equation (A18) concludes the proof.

Proof of Lemma 3. The proof of Lemma 3 follows immediately from Lemma 2 in combi-

nation with Assumption 3.
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B Market makers with cross-market monitoring capacities

Fragmentation in my theoretical framework resembles a strict separation of the market

participants at the two markets which can be overcome only by arbitrageurs. More specif-

ically, I restrict local market makers to observe quotes at the other market, respectively.

Arguably, a more realistic trading infrastructure presumably imposes less severe restric-

tions on the monitoring capacities of local market makers. Instead, assume that market

makers can observe their own quotes and the quotes of the competing market at all times

but they are restricted from providing liquidity at both markets. Then, market maker

k ∈ {i, j} instantaneously reacts to a shift in the quotes of market k′ 6= k and limited price

informativeness due to market fragmentation does not play a role. However, if I instead

impose noisy information revelation in the spirit of Foucault et al. (2017), price differ-

ences may persist and the thread of adverse selection remains active. More specifically,

assume that at random times τ̃ kl , market makers at k receive a private valuation shock

of magnitude γ ∼ N(0, σγ). Then from the perspective of market maker k, quoted prices

at the opposite market only reveal information about the aggregate valuation vk
′
t + γ.

Further, from the perspective of market maker k′ the uncertainty with respect to the

efficient price process vt remains present and causes her to set spreads accordingly. In

line with Foucault et al. (2017) such a setup does not reveal the full information set of

market maker k′ to market maker k and therefore price differences remain until they are

either dissolved by new information or by an arbitrage trade.

C Details regarding assumption 2

Proposition 2. Assumption 2 implies an equivalent distribution of arrival times at the

individual markets as assuming that information arrives at times {0, t1, . . . , tn} and is

then revealed on marketk ∈ {i, j} with probability λk/(λi + λj).

Proof. In the following I show that the probability density function of the event τ k = x,

x > 0 is equivalent to an exponential distribution with parameter λk. Define λ; = λi+λj.

First τ k = x holds if and only if all information arrivals until τ k occurred at the opposite

market. Further, the sum of s independent and identical exponential distributed variables

with scale parameter λ follows the Erlang distribution with probability density function
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π(x) = λsxs−1 exp(−λx)
(s−1)!

. Then it holds that

π
(
τ k = x

)
=
∞∑
s=1

π (s trials)π

(
s∑
i=1

τi = x

)
(C19)

=
∞∑
s=1

(
1− λk

λ

)s−1
λk
λ

λs

(s− 1)!
xs−1 exp−λx (C20)

= λk exp−λx
∞∑
s=1

(λ− λk)s−1 xs−1 (C21)

= λk exp−λx exp(λ−λk)x (C22)

= λk exp−λkx . (C23)

Therefore, π
(
τ k = x

)
corresponds to an exponential distributed random variable with

scale parameter λk which concludes the proof.

D MCMC Algorithm

The following section illustrates the Monte Carlo Markov Chain Algorithm to calibrate

the three-regime threshold vector error correction model. In line with the notation of

Equation (11) the model can be rewritten as a (stationary) multivariate linear regression

∆V r = XrBr + U r (D24)

where

∆V r
tr =

(
∆vitr
∆vjtr

)′
and Xr

tr =

(
1

ztr−1

)′
. (D25)

Here, tr corresponds to the stacked dates of all observations in regime r. Therefore, the

data is of the form ∆V ∈ RT×2 and X ∈ RT×2. The data is separated into three regimes

by the thresholds cneg
t and cpos

t such that

∆V neg := {Yt : zt−1 < cneg
t } and Xneg := {Xt : zt−1 < cneg

t } (D26)

∆V pos := {Yt : zt−1 > cpos
t } and Xpos := {Xt : zt−1 > cpos

t } (D27)

∆V 0 := {Yt : cneg
t < zt−1 < cpos

t } and X0 := {Xt : cneg
t < zt−1 < cneg

t } (D28)

54



The respective size of the partitioned matrices is ∆V 0 ∈ RT 0×2, ∆V pos ∈ RTpos×2 and

∆V neg ∈ RTneg×2 with T 0 + T pos + T neg = T . Thus, for i ∈ {neg, 0, pos}, the underlying

data-generating process takes the form:

∆V r = Xrβr + U r with UR
t ∼MN(0,Σr) (D29)

whereMN(·) corresponds to the multivariate normal distribution with probability density

function with zero mean

π (x) = π

(
x1

x2

)
= (2π)−1 det (Σr)−

1
2 exp

(
−
(′Σr−1x

))
. (D30)

Conditional on the parameters cpos
0 , cneg

0 and c1, standard inference from Bayesian multi-

variate linear regression models applies. First, the likelihood takes the form

L(∆V |θ,X) ∝
∏

r∈{neg, 0, pos}

|Σr|−T r/2 exp

(
−1

2
tr
(
(Σr)−1 U r

θ
′U r
θ

))
(D31)

Then, conditional conjugate priors for βr = vec (Br) and Σr are chosen such that for

suitable hyperparameters β = vec(B),Ψ, and ν I have:

π(Σr) ∼ IW (Ψ, ν) =
|Ψ|ν/2

2νp/2cp(
ν
2
)
|Σr|−(ν+p+1)/2 exp

(
−1

2
tr(Ψ (Σr)−1)

)
(D32)

π(βr|Σr) ∼MN(β,Σr ⊗ Λ−1) (D33)

The priors for cr0 and c1 are uniform such that

π(c1) ∼ π(cr0) ∼ U (−∞,∞) . (D34)

A standard Gibbs sampling scheme applies for the posterior when conditioning on the

threshold variables cpos
t and cneg

t . Given initial (or sampled) values of {cpos
t , cneg

t } the

algorithm works as follows:

• Separate the data ∆V and X into ∆V neg,∆V 0,∆V pos and Xneg, X0, Xpos.

• For each of the three regimes r ∈ {neg, 0, pos} generate a draw Σr from the Inverse

Wishart distribution based on the posterior distribution

π(Σr|∆V,X) ∼ IW (Ψ̃, ν̃) (D35)
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where

Ψ̃ = Ψ + (∆V −XB̃)′(∆V −XB̃) + (B̃ −B)′Λ(B̃ −B) (D36)

ν̃ = ν + T r (D37)

B̃ = (X ′X + Λ)−1(X ′∆V + ΛB) (D38)

(D39)

• For each of the three regimes r ∈ {neg, 0, pos} generate a draw β from the multi-

variate normal distribution based on the (conditional) posterior distribution

π (βr|Σr) ∝MVN
(

vec
(
B̃
)
,Σr ⊗

(
Xr ′Xr + Λ

)−1
)

(D40)

• Random walk Metropolis Hastings step within Gibbs: Sample c̃neg
0 , c̃pos

0 and c̃1 in-

dependently from a normal distribution with means cneg
0 , cpos

0 and c1 and sampling

variances σ0 and σ1. Compute the acceptance ratio

α({c̃neg
0 , c̃pos

0 , c̃1}|{cneg
0 , cpos

0 , c1}) = min

(
1,
L(∆V |c̃t, β0, βpos, βneg,Σ0,Σneg,Σpos, X)

L(∆V |ct, β0, βpos, βneg,Σ0,Σneg,Σpos, X)

)
.

(D41)

Letting T̃ r the sample size of ∆V based on the new segmentation due to c̃t and Ũ r

the corresponding residuals ∆Ṽ r − X̃rβr , I get:

log (α({c̃neg
0 , c̃pos

0 , c̃1}) =
1

2

∑
r

((
T r − T̃ r

)
log |Σr|+ tr(Σr−1(U r ′U r − Ũ r′Ũ r))

)
.

(D42)
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